Skip to main content
Log in

Efficient maximization of coloration by modification in morphology of electrodeposited NiO thin films prepared with different surfactants

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, we report on the nickel oxide (NiO) thin films potentiostatically electrodeposited onto indium-doped tin oxide-coated glass substrates by using two types of organic surfactants: (1) non-ionic: polyethylene glycol (PEG), polyvinylpyrrolidone (PVP) and (2) anionic: sodium dodecyl sulfate (SDS). An aqueous solution containing nickel sulfate precursor and potassium hydroxide buffer was used to grow the samples. The effect of organic surfactants on its structural, morphological, wettability, optical, electrochromic, and in situ colorimetry were studied using X-ray diffraction, scanning electron microscopy, contact angle, FT-IR spectroscopy, optical transmittance, cyclic voltammetry, and CIE system of colorimetry. X-ray diffraction patterns show that the films are polycrystalline, consisting of NiO cubic phase. A nanoporous structure with pore diameter of about 150–200 nm was observed for pure NiO. The films deposited with the aid of organic surfactants exhibits various surface morphological feature. PVP-mediated NiO thin film shows noodle-like morphology with well-defined surface area whereas, an ordered pore structure composed of channels of uniform diameter of about 60–80 nm was observed for PEG. A compact and smooth surface with nanoporous structure stem from SDS helps for improved electrochromic performance compared with that of NiO deposits from surfactant-free solution. Wetting behavior shows, transformation from hydrophilic to superhydrophilic nature of NiO thin films deposited with organic surfactant, which helps for much more paths for electrolyte access. The surfactant-mediated NiO produce high color/bleach transmittance difference up to 57% at 630 nm. On oxidation of NiO/SDS, the CIELAB 1931 2° color space coordinates show the transition from colorless to the deep brown state (L* = 84.41, a* = −0.33, b* = 4.41, and L* = 43.78, a* = 7.15, b* = 13.69), with steady decrease in relative luminance. The highest coloration efficiency of 54 cm2 C−1 with an excellent reversibility of 97% was observed for NiO/SDS thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Granqvist CG (1995) Handbook of inorganic electrochromic materials. Elsevier, Amsterdam, pp 162–165

    Google Scholar 

  2. Yu PC, Nazri G, Lampert CM (1987) Sol Energy Mater 19:1

    Article  Google Scholar 

  3. Hotovy I, Huran J, Spiess L, Hascik S, Rehacek V (1999) Sens Actuat B 57:147–152

    Article  Google Scholar 

  4. Nattestad A, Ferguson M, Kerr R, Cheng Yi-B, Bach U (2008) Nanotechnology 19(295304):3852–3854

    Google Scholar 

  5. Ghosh M, Biswas K, Sundaresan A, Rao CNR (2006) J Mater Chem 16:106–111

    Article  CAS  Google Scholar 

  6. Wei B, Yamamoto S, Ichikawa M, Li C, Takeshi F, Taniguchi Y (2007) Semicond Sci Technol 22:788–792

    Article  CAS  Google Scholar 

  7. Sreethawong T, Suzuki Y, Yoshikawa S (2005) Int J Hydrogen Energy 30:1053–1062

    Article  CAS  Google Scholar 

  8. Gomes A, da Silva Pereira MI (2006) Electrochim Acta 51:1342–1350

    Article  CAS  Google Scholar 

  9. Kavinchan J, Thongtem T, Thongtem S (2010) Mater Lett 61:2388–2391

    Article  Google Scholar 

  10. Zhu Z, Wei N, Liu H, Hea Z (2010) Advanced powder technology, In Press, Corrected Proof, Available online 1 July (doi:10.1016/j.apt.2010.06.008)

  11. Cavalcante LS, Sczancoski JC, Tranquilin RL, Varela JA, Longo E, Orlandi MO (2009) Particuology 7:353–362

    Article  CAS  Google Scholar 

  12. Thongtem T, Pilapong C, Kavinchan J, Phuruangrat A, Thongtem S (2010) J Alloy Comp 500:195–199

    Article  CAS  Google Scholar 

  13. Phuruangrat A, Thongtem T, Thongtem S (2009) J Alloy Compd 481:568–572

    Article  CAS  Google Scholar 

  14. Thongtem T, Jattukul S, Phuruangrat A, Thongtem S (2010) J Alloy Compd 491:654–665

    Article  CAS  Google Scholar 

  15. Moura AP, Cavalcante LS, Sczancoski JC, Stroppa DG, Paris EC, Ramirez AJ, Varela JA, Longo E (2010) Adv Powder Technol 21:197–202

    Article  CAS  Google Scholar 

  16. Inamdar AI, Mujawar SH, Ganesan V, Patil PS (2008) Nanotechnology 19:325706

    Article  CAS  Google Scholar 

  17. Retter U, Tchachnikova M (2003) J Electroanal Chem 550:201–208

    Article  Google Scholar 

  18. Opydo J (1992) Talanta 39:229–234

    Article  CAS  Google Scholar 

  19. Lai WH, Shieh J, Teoh LG, Hung IM, Liao CS, Hon MH (2005) J Alloy Compd 396:295–301

    Article  CAS  Google Scholar 

  20. Tan Y, Srinivasan S, Choi K-S (2005) J Am Chem Soc 127:3596–3604

    Article  CAS  Google Scholar 

  21. Lee J, Hwang DK, Choi JM, Lee K, Kim JH, Im S (2005) Appl Phys Lett 87:023504

    Article  Google Scholar 

  22. Nelson PA, Elliott JM, Attard GS, Owen JR (2002) J New Mater Electrochem Syst 5:63–65

    CAS  Google Scholar 

  23. Xia XH, Tu JP, Zhang J, Wang XL, Zhang WK, Huang H (2008) Electrochim Acta 53:5721–5724

    Article  CAS  Google Scholar 

  24. Purushothaman KK, Muralidharan G (2008) J Sol Gel Sci Technol 46:90–94

    Article  Google Scholar 

  25. Kamal H, Elmaghraby EK, Ali SA, Abdel-Hady K (2004) J Cryst Growth 262:424–434

    Article  CAS  Google Scholar 

  26. Wang X, Song J, Gao L, Jin Ji, Zheng H, Zhang Z (2005) Nanotechnology 16:37

    Article  CAS  Google Scholar 

  27. Uplane MM, Mujawar SH, Inamdar AI, Shinde PS, Sonavane AC, Patil PS (2007) Appl Surf Sci 251:9365–9371

    Article  Google Scholar 

  28. Maruyama T, Arai S (1993) Sol Energy Mater Sol Cells 30:257–262

    Article  CAS  Google Scholar 

  29. Penin N, Rougier A, Laffont L, Poizot P, Tarascon JM (2006) Sol Energy Mater Sol Cells 90:422–433

    Article  CAS  Google Scholar 

  30. Nagai J (1993) Sol Energy Mater Sol Cells 31:291–299

    Article  CAS  Google Scholar 

  31. Ahn KS, Nah YC, Sung YE (2003) Solid State Ionics 165:155–160

    Article  CAS  Google Scholar 

  32. Avendan E, Azens A, Isidorsson J, Karmhag R, Niklasson GA, Granqvist CG (2003) Solid State Ionics 165:169–173

    Article  Google Scholar 

  33. Wu MS, Yang CH (2007) Appl Phys Lett 91:033109

    Article  Google Scholar 

  34. Huo QS, Margolese DI, Ciesla U, Demuth DG, Feng PY, Gier TE, Sieger P, Firouzi A, Chmelka BF, Schuth F, Stucky GD (1994) Chem Mater 6:1176–1181

    Article  CAS  Google Scholar 

  35. Kadam LD, Patil PS (2001) Sol Energy Mater Sol Cells 69:361–369

    Article  CAS  Google Scholar 

  36. Korosec RC, Ogorevc JS, Draskovic P, Drazic G, Bukovec P (2008) Thin Solid Films 516:8264–8271

    Article  Google Scholar 

  37. Matar OK, Craster RV (2009) Soft Matter 5:801–808

    Article  Google Scholar 

  38. Peng X, Chen A (2005) Appl Phys A 80:473–476

    Article  CAS  Google Scholar 

  39. Dalavi DS, Suryavanshi MJ, Patil DS, Mali SS, Mohalkar AV, Kalagi SS, Vanalkar SA, Kang SR, Kim JH, Patil PS (2011) Appl Surf Sci. 257:2647–2656

    Article  Google Scholar 

  40. Ezema FI, Ekwealor ABC, Osuji RU (2008) Superficies y Vacío 21(1):6–10

    Google Scholar 

  41. Sonavane AC, Inamdar AI, Shinde PS, Deshmukh HP, Patil RS, Patil PS (2010) J Alloy Compd 489:667–673

    Article  CAS  Google Scholar 

  42. Lou X, Zhao X, Feng J, Zhou X (2009) Prog Org Coat 64:300–307

    Article  CAS  Google Scholar 

  43. Kalagi SS, Dalavi DS, Pawar RC, Tarwal NL, Mali SS, Patil PS (2010) J Alloy Compd 493:335–339

    Article  CAS  Google Scholar 

  44. CIE, Colorimetry (Official Recommendations of the International Commission on illumination) (1971) CIE Publication No15 Paris

  45. Song HK, Lee EJ, Oh SM (2005) Chem Mater 17:2232–2233

    Article  CAS  Google Scholar 

  46. Mortimer RJ, Reynolds JR (2005) J Mater Chem 15:2226–2233

    Article  CAS  Google Scholar 

  47. Fei J, Lim KG, Palmore GTR (2008) Chem Mater 20(12):3832–3839

    Article  CAS  Google Scholar 

Download references

Acknowledgment

One of the authors, Mr. D. S. Dalavi, is thankful to University Grants Commission (UGC) for the award of Rajiv Gandhi Junior Research Fellowship and UGC-New Delhi for the financial support though UGC-New Delhi Project F.No.211/2008 (SR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod S. Patil.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(AVI 1875 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalavi, D.S., Suryavanshi, M.J., Mali, S.S. et al. Efficient maximization of coloration by modification in morphology of electrodeposited NiO thin films prepared with different surfactants. J Solid State Electrochem 16, 253–263 (2012). https://doi.org/10.1007/s10008-011-1314-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1314-y

Keywords

Navigation