Skip to main content
Log in

Electrochemical texturing of Al-doped ZnO thin films for photovoltaic applications

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The processes during chemical and electrochemical etching of Al-doped ZnO are investigated utilizing a scanning flow cell setup with online detection of dissolved Zn ions. The rate of chemical dissolution was found to be a linear function of buffer and proton concentration in near neutral pH solutions according to a transport limited reaction. In contrast, electrochemical etching is limited by the kinetics of the reaction and increases linearly with the imposed current density. Due to this fundamental difference, the dissolution of Zn can be either uniform over the whole surface or highly localized at active sites like grain boundaries. A combined approach of chemical etching and the well-controllable galvanostatic dissolution thus allows a fine adjustment of the ZnO:Al surface texture for applications in silicon thin film photovoltaic cells in order to improve their overall energy conversion efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lewis NS (2007) Toward cost-effective solar energy use. Science 315(5813):798–801

    Article  CAS  Google Scholar 

  2. Green MA (2006) Consolidation of thin-film photovoltaic technology: The coming decade of opportunity. Prog Photovolt 14(5):383–392

    Article  Google Scholar 

  3. Maycock PD (2005) PV review: World Solar PV market continues explosive growth. Refocus 6(5):18–22

    Article  Google Scholar 

  4. Kubon M, Boehmer E, Siebke F, Rech B, Beneking C, Wagner H (1996) Solution of the ZnO/p contact problem in a-Si:H solar cells. Sol Energy Mater Sol Cells 41–42:485–492

    Google Scholar 

  5. Morris J, Arya RR, Odowd JG, Wiedeman S (1990) Absorption enhancement in hydrogenated amorphous silicon-based solar cells. J Appl Phys 67(2):1079–1087

    Article  CAS  Google Scholar 

  6. Müller J, Rech B, Springer J, Vanecek M (2004) TCO and light trapping in silicon thin film solar cells. Sol Energy 77(6):917–930

    Article  Google Scholar 

  7. Hüpkes J, Müller J, Rech B, Klein A, Rech B (2008) Texture etched ZnO:Al for silicon thin film solar cells. In: Ellmer K (ed) Transparent conductive zinc oxide: basics and applications in thin film solar cells. Springer, Berlin

    Google Scholar 

  8. Kluth O, Schöpe G, Hüpkes J, Agashe C, Müller J, Rech B (2003) Modified Thornton model for magnetron sputtered zinc oxide: film structure and etching behaviour. Thin Solid Films 442(1–2):80–85

    Article  CAS  Google Scholar 

  9. Berginski M, Rech B, Hüpkes J, Stiebig H, Wuttig M (2006) Design of ZnO:Al films with optimized surface texture for silicon thin-film solar cells—art. no. 61970Y. In: Gombert A (ed) Photonics for Solar Energy Systems, vol 6197. Proceedings of the Society of Photo-Optical Instrumentation Engineers (Spie). Spie-Int Soc Optical Engineering, Bellingham, pp Y1970–Y1970

    Google Scholar 

  10. Owen JI, Hüpkes J, Zhu H, Bunte E, Pust SE (2011) Novel etch process to tune crater size on magnetron sputtered ZnO:Al. Phys Status Solidi A 208(1):109–113

    Article  Google Scholar 

  11. Mariano AN, Hanneman RE (1963) Crystallographic polarity of ZnO crystals. J Appl Phys 34(2):384–388

    Article  CAS  Google Scholar 

  12. Jo W, Kim S-J, Kim D-Y (2005) Analysis of the etching behavior of ZnO ceramics. Acta Mater 53(15):4185–4188

    Article  CAS  Google Scholar 

  13. Gatos HC (1961) Dangling bonds in III–V compounds. J Appl Phys 32(7):1232–1234

    Article  CAS  Google Scholar 

  14. Fruhwirth O, Herzog GW, Poulios J (1985) Dark dissolution and photodissolution of ZnO. Surf Technol 24(3):293–300

    Article  CAS  Google Scholar 

  15. Gerischer H, Sorg N (1991) Chemical dissolution of oxides—experiments with sintered ZnO pellets and ZnO single crystals. Werkst Korros Mater Corros 42(4):149–157

    Article  CAS  Google Scholar 

  16. Hüpkes J, Rech B, Calnan S, Kluth O, Zastrow U, Siekmann H, Wuttig M (2006) Material study on reactively sputtered zinc oxide for thin film silicon solar cells. Thin Solid Films 502(1–2):286–291

    Article  Google Scholar 

  17. Lin YC, Jian YC, Jiang JH (2008) A study on the wet etching behavior of AZO (ZnO:Al) transparent conducting film. Appl Surf Sci 254(9):2671–2677. doi:10.1016/j.apsusc.2007.10.012

    Article  CAS  Google Scholar 

  18. Valtiner M, Borodin S, Grundmeier G (2008) Stabilization and acidic dissolution mechanism of single-crystalline ZnO(0001) surfaces in electrolytes studied by in-situ AFM imaging and ex-situ LEED. Langmuir 24(10):5350–5358

    Article  CAS  Google Scholar 

  19. Pourbaix M (1966) Atlas of electrochemical equilibria in aqueous solutions. Pergamon, New York

    Google Scholar 

  20. Gerischer H, Sorg N (1992) Chemical dissolution of zinc-oxide crystals in aqueous-electrolytes—an analysis of the kinetics. Electrochim Acta 37(5):827–835

    Article  CAS  Google Scholar 

  21. Zembura Z, Burzynska L (1977) Corrosion of zinc in deaerated 0.1 M NaCl in pH range from 1.6 to 13.3. Corros Sci 17(11):871–878

    Article  CAS  Google Scholar 

  22. Pettinger B, Schöppel HR, Gerischer H (1974) Tunnelling processes at highly doped ZnO electrodes in contact with aqueous electrolytes.1. Electron exchange with conduction band. Ber Bunsen Ges Phys Chem Chem Phys 78(5):450–455

    CAS  Google Scholar 

  23. Pettinger B, Schöppel HR, Yokoyama T, Gerischer H (1974) Tunnelling processes at highly doped ZnO-Electrodes in aqueous electrolytes. 2. Electron exchange with valence band. Ber Bunsen Ges Phys Chem Chem Phys 78(10):1024–1030

    CAS  Google Scholar 

  24. Wellings JS, Samantilleke AP, Warren P, Heavens SN, Dharmadasa IM (2008) Comparison of electrodeposited and sputtered intrinsic and aluminium-doped zinc oxide thin films. Semicond Sci Technol 23(12):7

    Article  Google Scholar 

  25. Palacios-Lidon E, Perez-Garcia B, Vennegues P, Colchero J, Munoz-Sanjose V, Zuniga-Perez J (2009) Anisotropic chemical etching of semipolar 1011/{101 + 1 ZnO crystallographic planes: polarity versus dangling bonds. Nanotechnology 20(6):6

    Article  Google Scholar 

  26. Elias J, Tena-Zaera R, Wang GY, Levy-Clement C (2008) Conversion of ZnO nanowires into nanotubes with tailored dimensions. Chem Mater 20(21):6633–6637

    Article  CAS  Google Scholar 

  27. Han J, Qiu W, Gao W (2010) Potential dissolution and photo-dissolution of ZnO thin films. J Hazard Mater 178(1–3):115–122

    Article  CAS  Google Scholar 

  28. Yoo DG, Nam SH, Kim MH, Jeong SH, Jee HG, Lee HJ, Lee NE, Hong BY, Kim YJ, Jung D, Boo JH (2008) Fabrication of the ZnO thin films using wet-chemical etching processes on application for organic light emitting diode (OLED) devices. Surf Coat Technol 202(22–23):5476–5479

    Article  CAS  Google Scholar 

  29. Klemm SO, Schauer J-C, Schuhmacher B, Hassel AW (2011) A Microelectrochemical Scanning Flow Cell with Downstream Analytics. Electrochim Acta, doi:10.1016/j.electacta.2011.01.052

  30. Berginski M, Hüpkes J, Schulte M, Schöpe G, Stiebig H, Rech B, Wuttig M (2007) The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells. J Appl Phys 101(7):074903–074911

    Article  Google Scholar 

  31. Hassel AW, Fushimi K, Seo M (1999) An agar-based silver | silver chloride reference electrode for use in micro-electrochemistry. Electrochem Commun 1(5):180–183

    Article  CAS  Google Scholar 

  32. Mardare AI, Hassel AW (2009) Quantitative optical recognition of highly reproducible ultrathin oxide films in microelectrochemical anodization. Rev Sci Instrum 80(4):046106. doi:04610610.1063/1.3117210

    Article  Google Scholar 

  33. Reichle RA, McCurdy KG, Hepler LG (1975) Zinc hydroxide—solubility product and hydroxy-complex stability-constants from 12.5–75°C. Can J Chem Rev Can Chim 53(24):3841–3845

    Article  CAS  Google Scholar 

  34. Guśpiel J, Riesenkampf W (1993) Kinetics of dissolution of ZnO, MgO and their solid-solutions in aqueous sulfuric-acid-solutions. Hydrometallurgy 34(2):203–220

    Article  Google Scholar 

  35. Tuller HL (1999) ZnO grain boundaries: electrical activity and diffusion. J Electroceram 4:33–40

    Article  CAS  Google Scholar 

  36. Lohrengel MM, Rosenkranz C, Klüppel I, Moehring A, Bettermann H, Van den Bossche B, Deconinck J (2004) A new microcell or microreactor for material surface investigations at large current densities. Electrochim Acta 49(17–18):2863–2870

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Janine Worbs (Forschungszentrum Jülich GmbH) for deposition of ZnO:Al thin films. Furthermore, the financial support by Dortmunder Oberflächencentrum GmbH, Dortmund, Germany and by the Deutsche Forschungsgemeinschaft (DFG, grant PU 447/1-1) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian O. Klemm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klemm, S.O., Pust, S.E., Hassel, A.W. et al. Electrochemical texturing of Al-doped ZnO thin films for photovoltaic applications. J Solid State Electrochem 16, 283–290 (2012). https://doi.org/10.1007/s10008-011-1313-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1313-z

Keywords

Navigation