Skip to main content
Log in

A study of the charge propagation in nanoparticles of Fe2O3 core-cobalt hexacyanoferrate shell by chronoamperometry and electrochemical impedance spectroscopy

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A composite electrode comprised of graphite, Nujol, and nanoparticles of Fe2O3 core–cobalt hexacyanoferrate shell was prepared and the charge transport processes in the bulk of this composite were studied. The electrode/solution interface was assumed as a binary electrolyte whose charge transport occurred between redox sites of the nanoparticles present in the composite and counter cations present in the solution. Using cyclic voltammetry, the diffusion of counter cation in the shell was investigated. Using chronoamperometry, an effective diffusion coefficient and its dependency on the applied potential was obtained. In the Nyquist diagrams, different time constants were appeared with relation to different physical and electrochemical processes. Percolation of electron in the shell of the nanoparticles appeared at very high frequencies and exhibited the feature of a diffusion process with a transmissive boundary condition at interface of core–shell structure/graphite particles. The diffusion coefficients of electron and counter cation and the standard rate constants of each individual electrochemical reaction were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Scheme 3
Fig. 8

Similar content being viewed by others

References

  1. Wade TL, Wegrowe JE (2005) Eur Phys J Appl Phys 29:3

    Article  CAS  Google Scholar 

  2. Nalwa HS (2004) Encyclopedia of nanoscience and nanotechnology. American Scientific Publishers, Los Angeles

    Google Scholar 

  3. Heli H, Majdi S, Sattarahmady N (2010) Mater Res Bull 45:850

    Article  CAS  Google Scholar 

  4. Cao G (2004) Nanostructures and nanomaterials—synthesis properties and applications. Imperial College Press, USA

    Book  Google Scholar 

  5. Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T (1996) Nature 382:54

    Article  CAS  Google Scholar 

  6. Heli H, Majdi S, Sattarahmady N (2010) Sens Actuators 145B:185

    Google Scholar 

  7. Heli H, Hajjizadeh M, Jabbari A, Moosavi-Movahedi AA (2009) Biosens Bioelectron 24:2328

    Article  CAS  Google Scholar 

  8. Heli H, Hajjizadeh M, Jabbari A, Moosavi-Movahedi AA (2009) Anal Biochem 388:81

    Article  CAS  Google Scholar 

  9. Sattarahmady N, Heli H, Moosavi-Movahedi AA (2010) Biosens Bioelectron 25:2329

    Article  CAS  Google Scholar 

  10. Sattarahmady N, Heli H, Faramarzi F (2010) Talanta 82:1126

    Article  CAS  Google Scholar 

  11. Xiong H, Xia Y (2007) Adv Mater 19:3085

    Article  Google Scholar 

  12. de Tacconi RN, Rajeshwar K, Lezna RO (2003) Chem Mater 15:3046

    Article  Google Scholar 

  13. Pournaghi-Azar MH, Razmi-Nerbin H (2000) Electroanalysis 12:209

    Article  CAS  Google Scholar 

  14. Pournaghi-Azar MH, Sabzi R (2002) J Solid State Electrochem 6:553

    Article  CAS  Google Scholar 

  15. Pournaghi-Azar MH, Razmi-Nerbin H, Hafezi B (2002) Electroanalysis 14:206

    Article  CAS  Google Scholar 

  16. Uemura T, Ohba M, Kitagawa S (2004) Inorg Chem 43:7339

    Article  CAS  Google Scholar 

  17. Qu F, Yang M, Lu Y, Shen G, Yu R (2006) Anal Bioanal Chem 386:228

    Article  CAS  Google Scholar 

  18. Feng LD, Shen JM, Li XH, Zhu JJ (2008) J Phys Chem C 112:7617

    Article  CAS  Google Scholar 

  19. Lezna RO, Romagnoli R, de Tacconi NR, Rajeshwar K (2002) J Phys Chem B 106:3612

    Article  CAS  Google Scholar 

  20. de Tacconi NR, Rajeshwar K, Lezna RO (2006) J Electroanal Chem 587:42

    Article  Google Scholar 

  21. Tse Y-H, Janda P, Lever ABP (1994) Anal Chem 66:384

    Article  CAS  Google Scholar 

  22. Kitchin JR, Norskov JK, Barteau MA, Chen JG (2004) Phys Rev Lett 93:156

    Article  Google Scholar 

  23. Inzelt G (1994) In: Bard AJ (ed) Electroanalytical chemistry, vol. 18. Dekker, New York

    Google Scholar 

  24. Heli H, Yadegari H (2010) Electrochim Acta 55:2139

    Article  CAS  Google Scholar 

  25. Heli H, Yadegari H, Karimian K (2010) J Exp Nanosci. doi:10.1080/17458080.2010.483694

  26. Dalton EF, Surridge NA, Jernigan JC, Wilbourn KO, Facci JS, Murray RW (1990) Chem Phys 141:143

    Article  CAS  Google Scholar 

  27. Surridge NA, Jernigan JC, Dalton EF, Buck RP, Watanabe M, Zhang H, Pinkerton M, Wooster TT, Longmire ML, Facci JS, Murray RW (1989) Faraday Discuss Chem Soc 88:1

    Article  CAS  Google Scholar 

  28. Kalele S, Gosavi SW, Urban J, Kulkarni SK (2006) Curr Sci 91:1038

    CAS  Google Scholar 

  29. Heli H, Majdi S, Sattarahmady N, Parsaei A (2010) J Solid State Electrochem 14:1637

    Article  CAS  Google Scholar 

  30. Sattarahmady N, Heli H (2010) Anal Biochem 409:74

  31. Stamenkovic V, Schmidt TJ, Ross PN, Markovic NM (2003) J Electroanal Chem 554:19

    Google Scholar 

  32. Kang YS, Risbud S, Rabolt JF, Stroeve P (1996) Chem Mater 8:2209

    Article  CAS  Google Scholar 

  33. Kahlert H, Retter U, Lohse H, Siegler K, Scholz F (1998) J Phys Chem B 102:8757

    Article  CAS  Google Scholar 

  34. Pournaghi-Azar MH, Sabzi R (2003) J Electroanal Chem 543:115

    Article  CAS  Google Scholar 

  35. Shaoiun D, Fengbin L (1987) J Electroanal Chem 217:49

    Article  Google Scholar 

  36. Laviron E (1979) J Electroanal Chem 101:19

    Article  CAS  Google Scholar 

  37. Bard AJ, Faulkner LR (2001) Electrochemical methods. Wiley, New York, p 310

    Google Scholar 

  38. Kondratiev VV, Tikhomirova AV, Malev VV (1999) Electrochim Acta 45:751

    Article  CAS  Google Scholar 

  39. Garcia-Jareno JJ, Navarro-Laboulais J, Sanmatias A, Vicente F (1998) Electrochim Acta 43:1045

    Article  CAS  Google Scholar 

  40. Garcia-Jareno JJ, Navarro JJ, Roig AF, Scholl H, Vicente F (1995) Elecirochim Acta 40:1113

    Article  CAS  Google Scholar 

  41. Barsoukov E, Macdonald JR (2005) Impedance spectroscopy: theory, experiment, and applications, Wiley

  42. Gao Z, Bobocka J, Ivaska A (1993) Electrochim Acta 38:379

    Article  CAS  Google Scholar 

  43. Gao Z, Wang G, Li P, Zhao Z (1991) Electrochim Acta 36:147

    Article  CAS  Google Scholar 

  44. Pajkossy T (1994) J Electroanal Chem 364:111

    Article  CAS  Google Scholar 

  45. Bisquert J, Compte A (2001) J Electroanal Chem 499:112

    Article  CAS  Google Scholar 

  46. Neves RS, Robertis ED, Motheo AJ (2006) Electrochim Acta 51:1215

    Article  CAS  Google Scholar 

  47. Piela P, Fields R, Zelenay P (2006) J Electrochem Soc 153:A1902

    Article  CAS  Google Scholar 

  48. Pitarch A, Garcia-Belmonte G, Mora-Sero I, Bisquert J (2004) Phys Chem Chem Phys 6:2983

    Article  CAS  Google Scholar 

  49. Levi MD, Aurbach D (2005) J Phys Chem B 109:2763

    Article  CAS  Google Scholar 

  50. Bisquert J, Garcia-Belmonte G, Fabregat-Santiago F, Ferriols NS, Bogdanoff P, Pereira EC (2000) J Phys Chem B 104:2287

    Article  CAS  Google Scholar 

  51. Gabrielli C, Keddam M, Nadi N, Perrot H (1999) Electrochim Acta 44:2095

    Article  CAS  Google Scholar 

  52. Gabrielli C, Garcia-Jareno JJ, Keddam M, Perrot H, Vicente F (2002) J Phys Chem B 106:3182

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Iran National Science Foundation (INSF), the Research Councils of Islamic Azad University, Shiraz University of Medical Sciences, and K. N. Toosi University of Technology for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Heli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heli, H., Sattarahmady, N. & Majdi, S. A study of the charge propagation in nanoparticles of Fe2O3 core-cobalt hexacyanoferrate shell by chronoamperometry and electrochemical impedance spectroscopy. J Solid State Electrochem 16, 53–64 (2012). https://doi.org/10.1007/s10008-010-1273-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1273-8

Keywords

Navigation