We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Modeling of surface exchange reactions and diffusion in composites including transport processes at grain and interphase boundaries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Surface exchange reactions and diffusion of oxygen in ceramic composites consisting of a dilute and random distribution of inclusions in a polycrystalline matrix (host phase) are modeled phenomenologically by employing the finite element method. The microstructure of the mixed conducting composite is described by means of a square grain model, including grain boundaries of the matrix and interphase boundaries between the inclusions and grains of the host phase. An instantaneous change of the oxygen partial pressure in the surrounding atmosphere may give rise to an oxygen exchange process, i.e., oxidation or reduction of the ceramic composite. Relaxation curves for the total amount of exchanged oxygen are calculated, emphasizing the role played by fast diffusion along the interfaces. The relaxation curves are interpreted in terms of effective medium diffusion, introducing appropriate equations for the effective diffusion coefficient and the effective surface exchange coefficient. When extremely fast diffusion along the grain and interphase boundaries is assumed, the re-equilibration process shows two different time constants. Analytical approximations for the relaxation process and relations for the separate relaxation times are provided for this limiting case as well as for blocking interphase boundaries. Furthermore, conductivity relaxation curves are calculated by coupling diffusion and dc conduction. In the case of effective medium diffusion, the conductivity relaxation curves do not deviate from those for the total amount of exchanged oxygen. On the contrary, the conductivity relaxation curves differ remarkably from the time dependence of the total amount of exchanged oxygen, when the different phases of the composite re-equilibrate with separate time constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Maier J (1995) Prog Solid State Chem 23:171–263

    Article  CAS  Google Scholar 

  2. Steele BCH, Hori KM, Uchino S (2000) Solid State Ionics 135:445–450

    Article  CAS  Google Scholar 

  3. Ji Y, Kilner JA, Carolan MF (2005) Solid State Ionics 176:937–943

    Article  CAS  Google Scholar 

  4. Zhang K, Yang YL, Ponnusamy D, Jacobson AJ, Salama K (1999) J Mater Sci 34:1367–1372

    Article  CAS  Google Scholar 

  5. Diethelm S, van Herle J, Sfeir J, Buffat P (2004) Br Ceram Trans 103:147–152

    Article  CAS  Google Scholar 

  6. Sase M, Hermes F, Yashiro K, Sato K, Mizusaki J, Kawada T, Sakai N, Yokokawa H (2008) J Electrochem Soc 155:B793–B797

    Article  CAS  Google Scholar 

  7. Sase M, Yashiro K, Sato K, Mizusaki J, Kawada T, Sakai N, Yamaji K, Horita T, Yokokawa H (2008) Solid State Ionics 178:1843–1852

    Article  CAS  Google Scholar 

  8. Sata M, Eberman K, Eberl K, Maier J (2000) Nature 408:946–949

    Article  CAS  Google Scholar 

  9. Peters A, Korte C, Hesse D, Zakharov, Janek J (2007) Solid State Ionics 178:67–76

    Article  CAS  Google Scholar 

  10. Gryaznov D, Fleig J, Maier J (2006) Solid State Ionics 177:1583–1586

    Article  CAS  Google Scholar 

  11. Gryaznov D, Fleig J, Maier J (2008) Solid State Sci 10:754–760

    Article  CAS  Google Scholar 

  12. Bunde A, Dieterich W (2000) J Electroceramics 5:81–92

    Article  CAS  Google Scholar 

  13. Knauth P (2000) J Electroceramics 5:111–125

    Article  CAS  Google Scholar 

  14. McLachlan DS, Blaszkiewicz M, Newnham RE (1990) J Am Ceram Soc 73:2187–2203

    Article  CAS  Google Scholar 

  15. Kalnin JR, Kotomin EA, Maier J (2002) J Phys Chem Solids 63:449–456

    Article  CAS  Google Scholar 

  16. Belova IV, Murch GE (2004) Phil Mag 84:17–28

    Article  CAS  Google Scholar 

  17. Belova IV, Murch GE (2005) J Phys Chem Solids 66:722–728

    Article  CAS  Google Scholar 

  18. Jamnik J, Kalnin JR, Kotomin EA, Maier J (2006) Phys Chem Chem Phys 8:1310–1314

    Article  CAS  Google Scholar 

  19. Preis W (2009) J Phys Chem Solids 70:616–621

    Article  CAS  Google Scholar 

  20. Preis W (2009) Monatsh Chem 140:1059–1068

    Article  CAS  Google Scholar 

  21. Yoo HI, Lee CE (2009) Solid State Ionics 180:326–337

    Article  CAS  Google Scholar 

  22. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Clarendon, Oxford

    Google Scholar 

  23. Crank J (1975) The mathematics of diffusion. Oxford University Press, Oxford

    Google Scholar 

  24. Preis W, Sitte W (2005) J Phys Chem Solids 66:1820–1827

    Article  CAS  Google Scholar 

  25. Preis W, Sitte W (2008) Solid State Ionics 179:765–770

    Article  CAS  Google Scholar 

  26. Katsuki M, Wang S, Dokiya M, Hashimoto T (2003) Solid State Ionics 156:453–461

    Article  CAS  Google Scholar 

  27. Preis W, Bucher E, Sitte W (2002) J Power Sources 106:116–121

    Article  CAS  Google Scholar 

  28. Preis W, Bucher E, Sitte W (2004) Solid State Ionics 175:393–397

    Article  CAS  Google Scholar 

  29. Preis W, Holzinger M, Sitte W (2001) Monatsh Chem 132:499–508

    CAS  Google Scholar 

  30. Boukamp BA, den Otter MW, Bouwmeester HJM (2004) J Solid State Electrochem 8:592–598

    Article  CAS  Google Scholar 

  31. Preis W, Sitte W (2005) J Appl Phys 97:093504

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Preis.

Appendix

Appendix

The effective diffusion coefficient of the polycrystalline matrix (grains of phase 1 and grain boundaries) can be written as

$$ {D{\prime}_1} = \frac{{s{\prime}D{\prime}}}{{1 - g{\prime} + s{\prime}g{\prime}}}\left[ {1 + \frac{{2({D_1} - s{\prime}D{\prime})(1 - g{\prime})}}{{{D_1} + s{\prime}D{\prime} + (s{\prime}D{\prime} - {D_1})(1 - g{\prime})}}} \right] $$
(A1)

by employing the two-dimensional Maxwell–Garnett relation, where g′ is the volume fraction of grain boundaries in the matrix and s′ is defined by Eq. 5b. If fast grain boundary diffusion is assumed and the thickness of the grain boundaries is much smaller than the grain size, i.e., \( D{\prime} > > {D_1} \) and \( g{\prime} < < 1 \), Eq. A1 can be approximated by

$$ {D{\prime}_1} \approx \frac{{s{\prime}D{\prime}}}{{1 - g{\prime} + s{\prime}g{\prime}}} \times \frac{{(2 - g{\prime}){D_1} + s{\prime}D{\prime}g{\prime}}}{{2s{\prime}D{\prime}}} = \frac{{(1 - g{\prime}/2){D_1} + s{\prime}D{\prime}g{\prime}/2}}{{1 - g{\prime} + s{\prime}g{\prime}}}. $$
(A2)

Introducing the area fraction of grain boundaries, \( \varepsilon = \delta /d = g{\prime}/2 \), one arrives at Eq. 17, which has been derived for the effective diffusivity with respect to fast grain boundary diffusion previously [20, 24, 25, 31].

When the heterointerfaces are arbitrarily combined with the inclusions (phase 2), the effective diffusion coefficient, \( {D{\prime}_2} \) is given by

$$ {D{\prime}_2} = \frac{{{{s{\prime}{\prime}}_2}D{\prime}{\prime}}}{{1 - g{\prime}{\prime} + {{s{\prime}{\prime}}_2}g{\prime}{\prime}}}\left[ {1 + \frac{{2({D_2} - {{s{\prime}{\prime}}_2}D{\prime}{\prime})(1 - g{\prime}{\prime})}}{{{D_2} + {{s{\prime}{\prime}}_2}D{\prime}{\prime} + ({{s{\prime}{\prime}}_2}D{\prime}{\prime} - {D_2})(1 - g{\prime}{\prime})}}} \right] $$
(A3)

in analogy to relation (A1). In this case g″ is given by \( g{\prime}{\prime} = 4\delta /d = 2\varepsilon \), such that Eq. 18 is obtained assuming D″>> D2 and g″ <<1. For the sake of simplicity grain, boundaries are neglected in the inclusions. However, the extension of the relations for effective medium diffusion to polycrystalline inclusions is straightforward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Preis, W. Modeling of surface exchange reactions and diffusion in composites including transport processes at grain and interphase boundaries. J Solid State Electrochem 15, 2013–2022 (2011). https://doi.org/10.1007/s10008-010-1223-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1223-5

Keywords

Navigation