Skip to main content
Log in

An amperometric sensor for hydrazine based on nano-copper oxide modified electrode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A sensitive hydrazine sensor has been fabricated using copper oxide nanoparticles modified glassy carbon electrode (GCE) to form nano-copper oxide/GCE. The nano-copper oxide was electrodeposited on the surface of GCE in CuCl2 solution at −0.4 V and was characterized by Scanning electron microscopy and X-ray diffraction. The prepared modified electrode showed a good electrocatalytic activity toward oxidation of hydrazine. The electrochemical behavior of hydrazine on nano-copper oxide/GCE was explored. The oxidative current increased linearly with improving concentration of hydrazine on nano-copper oxide/GCE from 0.1 to 600 μM and detection limit for hydrazine was evaluated to be 0.03 μM at a signal-to-noise ratio of 3. The oxidation mechanism of hydrazine on the nano-copper oxide/GCE was also discussed. The fabricated sensor could be used to determine hydrazine in real water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Garrod S, Bollard ME, Nicholls AW, Connor SC, Connelly J, Nicholson J, Holmes E (2005) Chem Res Toxicol 18:115

    Article  CAS  Google Scholar 

  2. Mo JW, Ogorevc B, Zhang X, Pihlar B (2000) Electroanalysis 12:48

    Article  CAS  Google Scholar 

  3. Richard Prabakar SJ, Sriman Narayanan S (2008) J Electroanal Chem 617:111

    Article  Google Scholar 

  4. Golabi SM, Zare HR (1999) J Electroanal Chem 465:168

    Article  CAS  Google Scholar 

  5. Gilbert R, Rioux R (1984) Anal Chem 56:106

    Article  CAS  Google Scholar 

  6. Ortega Barrales P, Molina Díaz A, Pascual Reguera MI, Capitan Vallvey LF (1997) Anal Chim Acta 353:115

    Article  CAS  Google Scholar 

  7. Wang J, Lu Z (1989) Electroanalysis 1:517

    Article  CAS  Google Scholar 

  8. Ebadi M (2003) Can J Chem 81:161

    Article  CAS  Google Scholar 

  9. Huang JC, Zhang CX, Zhang ZJ (1999) Fresenius J Anal Chem 363:126

    Article  CAS  Google Scholar 

  10. Safavi A, Ensafi AA (1995) Anal Chim Acta 300:307

    Article  CAS  Google Scholar 

  11. Golabi SM, Zare HR (1999) Electroanalysis 11:1293

    Article  CAS  Google Scholar 

  12. Ravichandran K, Baldwin RP (1983) Anal Chem 55:1782

    Article  CAS  Google Scholar 

  13. Zou J, Wang E (1992) Electroanalysis 4:473

    Article  Google Scholar 

  14. Zhou W, Xu L, Wu M, Wang E (1994) Anal Chim Acta 299:189

    Article  CAS  Google Scholar 

  15. Korinek K, Korita J, Nusiloua M (1969) J Electroanal Chem 21:421

    Article  Google Scholar 

  16. Felischmann M, Korinek K, Plrtcher D (1972) J Electroanal Chem 34:499

    Article  Google Scholar 

  17. Gao GY, Guo DJ, Wang C, Li HL (2007) Electrochem Commun 9:1582

    Article  CAS  Google Scholar 

  18. Christopher BM, Craig EB, Andrew OS, Timothy GJJ, Compton RG (2006) Analyst 131:106

    Article  Google Scholar 

  19. Lisiecki I, Pileni MP (1993) J Am Chem Soc 115:3887

    Article  CAS  Google Scholar 

  20. Reitz JB, Solomon EI (1998) J Am Chem Soc 120:11467

    Article  CAS  Google Scholar 

  21. Liu Z, Zhou R, Zheng X (2007) J Mol Catal A Chem 267:137

    Article  CAS  Google Scholar 

  22. Zhuang Z, Su X, Yuan H, Sun Q, Xiao D (2008) Analyst 133:126

    Article  CAS  Google Scholar 

  23. Miao XM, Yuan R, Chai YQ, Shi YT, Yuan YY (2008) J Electroanal Chem 612:157–163

    Article  CAS  Google Scholar 

  24. Le WZ, Liu YQ (2009) Sens Actuators B 141:147

    Article  Google Scholar 

  25. Suni II (2008) TrAC Trends Anal Chem 27:604

    Article  CAS  Google Scholar 

  26. Rosca V, Koper MTM (2008) Electrochim Acta 53:5199

    Article  CAS  Google Scholar 

  27. Ghasem KN, Roghieh J, Parisa SD (2009) Electrochim Acta 54:5721

    Article  Google Scholar 

  28. Jayasri D, Narayanan SS (2007) J Hazard Mater 144:348

    Article  CAS  Google Scholar 

  29. Zheng JB, Sheng QL, Li L, Shen Y (2007) J Electroanal Chem 611:155

    Article  CAS  Google Scholar 

  30. Abbaspour A, Shamsipur M, Siroueinejad A, Kia R, Raithby PR (2009) Electrochim Acta 54:2916

    Article  CAS  Google Scholar 

  31. Salimi A, Abdi K (2004) Talanta 63:475

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Natural Science Foundation of China (Grant No. 20775002) for financial support. The work was supported by Program for Innovative Research Team in Anhui Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhousheng Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, Z., Liu, L. & Yang, Z. An amperometric sensor for hydrazine based on nano-copper oxide modified electrode. J Solid State Electrochem 15, 821–827 (2011). https://doi.org/10.1007/s10008-010-1161-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1161-2

Keywords

Navigation