Skip to main content
Log in

Ion exchange as a simple and effective tool for screening possible cation conductors

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Although kinetics of the low-temperature cation exchange in mixed oxide materials (aluminates, gallates, titanates, niobates, tantalates, antimonates, phosphates etc.) cannot provide quantitative information on self-diffusion and ionic conductivity in the starting material due to the mixed cation effect, it is the most direct and simple qualitative indication of the cation mobility in the solid state. It does not need using ceramics and single crystals and thus represents a useful tool for rapid selection of prospective cation conductors for subsequent detailed studies of dense samples with electrical methods. Examples of solid electrolytes discovered owing to their ion-exchange properties are reviewed, and rational principles of the ion-exchange testing are discussed. Laws of ion-exchange equilibria are based on ionic size compliance and the principle of hard and soft acids and bases. The former is most important for alkali/alkali exchange and the latter for exchanging cations of similar size but having different electronic structures: those of the rare-gas type and those having 18- or 18 + 2-electron shells, like Na+ and Ag+ or K+ and Tl+. Ion-exchange testing is especially useful for structures with non-intersecting conduction paths. It is shown that the resistivity of crystals with non-parallel and non-intersecting conduction paths cannot be described by the classical tensor formalism. Significant differences between isotope exchange, chemical ion exchange and ion conduction, quasi-one-dimensional and true one-dimensional conductors and single- and multiple-barrelled non-intersecting channels are disclosed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. England WA, Goodenough JB, Wiseman PJ (1983) Ion-exchange reactions of mixed oxides. J Solid State Chem 49:289–299

    Article  CAS  Google Scholar 

  2. Belyaev IN, Nalbandyan VB, Lupeiko TG (1986) Salt melts in the chemistry and technology of mixed oxides: 1. Exchange reactions of salt melts with mixed oxides. In: Delimarskii YK (ed) Ionnye Rasplavy i Tverdye Elektrolity, issue 1. Naukova Dumka, Kiev, pp 1–13 (in Russian)

    Google Scholar 

  3. Clearfield A (1988) Role of ion exchange in solid-state chemistry. Chem Rev 88:125–148

    Article  CAS  Google Scholar 

  4. Gopalakrishnan J (1995) Chimie douce approaches to the synthesis of metastable oxide materials. Chem Mater 7:1265–1275

    Article  CAS  Google Scholar 

  5. Yaroslavtsev AB (1997) Ion exchange on inorganic sorbents. Russ Chem Rev 66:579–596

    Article  Google Scholar 

  6. Sebastian L, Gopalakrishnan J (2003) Lithium ion mobility in metal oxides: a materials chemistry perspective. J Mater Chem 13:433–441

    Article  CAS  Google Scholar 

  7. Singer J, Fielder WL, Kautz HE, Fordyce JS (1976) New solid conductors of Na+ and K+ ions. J Electrochem Soc 123:614–617

    Article  CAS  Google Scholar 

  8. Goodenough JB, Hong HUP, Kafalas JA (1976) Fast Na+-ion transport in skeleton structures. Mater Res Bull 11:203–220

    Article  CAS  Google Scholar 

  9. Farrington GC, Briant JL (1978) Hydronium beta″ alumina: a fast proton conductor. Mater Res Bull 13:763–773

    Article  CAS  Google Scholar 

  10. Briant JL, Farrington GC (1981) Ionic conductivity in Li+-Na+ beta and beta″ alumina. Solid State Ionics 5:207–210

    Article  CAS  Google Scholar 

  11. Seevers R, Denuzzio J, Farrington GC (1983) Ion transport in Ca2+, Sr2+, Ba2+, and Pb2+ beta″ aluminas. J Solid State Chem 50:146–152

    Article  CAS  Google Scholar 

  12. Nalbandyan VB, Trubnikov IL, Bukun NG, Medvedev BS (1986) Proton conductivity of ceramic niobic and tantalic acids with the pyrochlore structure. Inorg Mater 22:736–740

    Google Scholar 

  13. Brunner DG, Tomandl G (1987) A new proton-conducting ceramics: part II, preparation of proton-conducting NH4NbWO6 and NH4TaWO6. Adv Ceram Mater 2:794–797

    CAS  Google Scholar 

  14. Nalbandyan VB, Medvedeva LI, Medvedev BS (2004) Two new types of intermediate temperature (200–500°C) proton conductors. In: Future hydrogen energy and platinum group metals in new independent states. Pt. 2, Moscow, pp 24–29 (in Russian)

  15. Doeff MM, Anapolsky A, Edman L, Richardson TJ, De Jonghe LC (2001) A high-rate manganese oxide for rechargeable lithium battery applications. J Electrochem Soc 148:A230–A236

    Article  CAS  Google Scholar 

  16. Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4301

    Article  CAS  Google Scholar 

  17. Yang WS, Li XM, Yang L, Evans DG, Duan X (2006) Synthesis and electrochemical characterization of pillared layered Li1−2xCaxCoO2. J Phys Chem Solids 67:1343–1346

    Article  CAS  Google Scholar 

  18. Becht GA, Vaughey JT, Britt RL, Eagle CT, Hwu SJ (2008) Ion exchange and electrochemical evaluation of the microporous phosphate Li9Fe7(PO4)10. Mater Res Bull 43:3389–3396

    Article  CAS  Google Scholar 

  19. Ellis BL, Lee KT, Nazar LF (2010) Positive electrode materials for Li-ion and Li-batteries. Chem Mater 22:691–714

    Article  CAS  Google Scholar 

  20. Ren Z, Wang Y, Liu S, Wang J, Xu Z, Cao G (2005) Synthesis of cobalt oxyhydrate superconductor through a disproportionation reaction route. Chem Mater 17:1501–1504

    Article  CAS  Google Scholar 

  21. Avdeev M, Nalbandyan VB, Shukaev IL (2009) Alkali metal cation and proton conductors: relationships between composition, crystal structure, and properties. In: Kharton VV (ed) Solid state electrochemistry I. Wiley-VCH, Weinheim, pp 227–278

    Chapter  Google Scholar 

  22. McDonald JR (1987) Impedance spectroscopy and its use in analyzing the steady-state ac response of solid and liquid electrolytes. J Electroanal Chem 223:25–50

    Article  Google Scholar 

  23. Boukamp BA (2004) Electrochemical impedance spectroscopy in solid state ionics: recent advances. Solid State Ionics 169:65–73

    Article  CAS  Google Scholar 

  24. Macdonald JR, Tuncer E (2007) Deconvolution of immittance data: some old and new methods. J Electroanal Chem 602:255–262

    Article  CAS  Google Scholar 

  25. Tesler AB, Lewin DR, Baltianski S, Tsur Y (2010) Analyzing results of impedance spectroscopy using novel evolutionary programming techniques. J Electroceram 24:245–260

    Article  Google Scholar 

  26. Nalbandyan VB, Medvedeva LI, Sudorgin NG, Medvedev BS (1993) Determination of the specific resistivity of ceramic cation conductors on sodium rare-earth silicates: comparison of methods and identification of error sources. Russ J Electrochem 29:1207–1214

    Google Scholar 

  27. Yoshikado S, Ohachi T, Taniguchi I, Onoda Y, Watanabe M, Fujiki Y (1983) Frequency-independent ionic conductivity of hollandite type compounds. Solid State Ionics 9(10):1305–1309

    Article  Google Scholar 

  28. Yoshikado S, Ohachi T, Taniguchi I, Watanabe M, Fujiki Y, Onoda Y (1989) Ion conduction in one-dimensional ionic conductors A1−xTi2+xB5−xO12 (ATBO, A=Na or K and B=Al or Ga, x < 1). Solid State Ionics 35:377–385

    Article  CAS  Google Scholar 

  29. Riess I (1996) Review of the limitations of the Hebb–Wagner polarization method for measuring partial conductivities in mixed ionic electronic conductors. Solid State Ionics 91:221–232

    Article  CAS  Google Scholar 

  30. Yaroslavtsev AB (1997) The investigation of ion diffusion in solids with the help of ion exchange. Solid State Ionics 97:281–284

    Article  CAS  Google Scholar 

  31. Chebotin VN, Perfil’ev MV (1978) Elektrokhimiya Tverdykh Electrolitov (Electrochemistry of solid electrolytes). Khimiya, Moscow, p 107, in Russian

    Google Scholar 

  32. Hughes K, Isard JO (1972) Ionic transport in glasses. In: Hladik J (ed) Physics of electrolytes, vol 1. Academic, London, p 387

    Google Scholar 

  33. Dyre JC, Maass P, Roling B, Sidebottom DL (2009) Fundamental questions relating to ion conduction in disordered solids. Rep Prog Phys 72:046501

    Article  Google Scholar 

  34. Yao YFY, Kummer JT (1967) Ion exchange properties of and rates of ionic diffusion in beta-alumina. J Inorg Nucl Chem 29:2453–2475

    Article  CAS  Google Scholar 

  35. Nalbandyan VB, Belyaev IN, Mezhzhorina NV (1979) Ion-exchange reactions of sodium ferrititanates and related compounds with salt melts. Zh Neorg Khim 24:3207–3212 (in Russian)

    CAS  Google Scholar 

  36. Nalbandyan VB (1999) A family of nonstoichiometric titanates with one-dimensional triple channels. Russ J Inorg Chem 44:511–519

    Google Scholar 

  37. Kummer JT (1972) Beta-alumina electrolytes. Prog Solid State Chem 7:141–175

    Article  CAS  Google Scholar 

  38. Foster LM, Campbell DR, Chandrashekhar GV (1978) Self-diffusion and Na-K exchange in β- and β″-gallate fast ion conductors. J Electrochem Soc 125:1689–1695

    Article  CAS  Google Scholar 

  39. Hervieu M, Michel C, Raveau B (1971) Proprietes d’echange d’ions de quelques oxydes ternaires de type pyrochlore: les pyrochlores H1+x(H2O)Ta1+xW1−xO6 et NH4TaWO6. Bull Soc Chim France 3939–3943

  40. Michel C, Guyomarc’h A, Raveau B (1977) Nouveax echangeurs cationiques avec une structure a tunnels entrecroises: les oxides A12M33O90 et A12M33O90, 12H2O. J Solid State Chem 22:393–403

    Article  CAS  Google Scholar 

  41. Masquelier C, d’Yvoire F, Bretey E, Berthet P, Peytour-Chansac C (1994) A new family of sodium ion conductors: the diphosphates and diarsenates Na7M3(X2O7)4; (M = A1, Ga, Cr, Fe; X = P, As). Solid State Ionics 67:183–189

    Article  CAS  Google Scholar 

  42. Quarez E, Mentre O, Oumellal Y, Masquelier C (2009) Crystal structures of new silver ion conductors Ag7Fe3(X2O7)4 (X = P, As). New J Chem 33:998–1005

    Article  CAS  Google Scholar 

  43. Nalbandyan VB, Belyaev IN, Lupeiko TG, Mezhzhorina NV (1979) Ion-exchange reactions of hollandite-type compounds. Zh Neorg Khim 24:1546–1552 (in Russian)

    CAS  Google Scholar 

  44. Nalbandyan VB, Belyaev IN (1984) Ionic conductivity of phases of the hollandite type with different single-charge cations. Zh Neorg Khim 29:817–819 (in Russian)

    CAS  Google Scholar 

  45. Nalbandyan VB, Dugin VE, Belyaev IN (1983) Growth of crystals and cationic conductivity of non-stoichiometric sodium magnesium titanium oxyfluoride. Inorg Mater 19:283–286

    Google Scholar 

  46. Shilov GV, Atovmyan LO, Volochaev VA, Nalbandyan VB (1999) Crystal structure and ionic conductivity of a new sodium magnesium titanium oxide. Crystallogr Rep 44:960–964

    Google Scholar 

  47. Nalbandyan VB (1991) Ionic conductivity of sodium titanates, magnotitanates, and zincotitanates. Inorg Mater 27:838–842

    Google Scholar 

  48. Nalbandyan VB (2000) Interaction of titanium dioxide with sodium fluoride and sodium carbonate. Russ J Inorg Chem 45:510–514

    Google Scholar 

  49. Nalbandyan VB (2000) Six NaCl-type trigonal superstructures based on sodium titanates. Russ J Inorg Chem 45:1652–1658

    Google Scholar 

  50. Nalbandyan VB (1999) On the structure type of Na10MgTi10O26. Crystallogr Rep 44:965–971

    Google Scholar 

  51. Nalbandyan VB, Politaev VV (2009) Subsolidus phase relations, crystal chemistry and cation-transport properties of sodium iron antimony oxides. Solid State Sci 11:144–150

    Article  Google Scholar 

  52. Nalbandyan VB, Medvedeva LI, Ivleva TI (1995) Synthesis of sodium-yttrium and silver-yttrium silicates. Russ J Inorg Chem 40:719–723

    Google Scholar 

  53. Nalbandyan VB, Avdeev M, Pospelov AA (2006) Ion exchange reactions of NaSbO3 and morphotropic series MSbO3. Solid State Sci 8:1430–1437

    Article  CAS  Google Scholar 

  54. Politaev VV, Nalbandyan VB, Petrenko AA, Shukaev IL, Volotchaev VA, Medvedev BS (2010) Mixed oxides of sodium, antimony (5+) and divalent metals (Ni, Co, Zn or Mg). J Solid State Chem 183:684–691

    Article  CAS  Google Scholar 

  55. Edwards DD, Empie NH, Meethong N, Amoroso JW (2006) Synthesis and transport studies of one-dimensional ion conductors: AxGa4+xTi1−xO8 (A = Li, Na, K). Solid State Ionics 177:1897–1900

    Article  CAS  Google Scholar 

  56. Li J, Yokochi AFT, Sleight AW (2004) Oxygen intercalation of two polymorphs of CuScO2. Solid State Sci 6:831–839

    Article  CAS  Google Scholar 

  57. Vainshtein BK, Chernov AA, Shuvalov LA (eds) (1981) Sovremennaya Kristallografiya (Modern crystallography), vol 4, chapter 6. Nauka, Moscow (in Russian)

  58. Breck DW (1974) Zeolite molecular sieves. Wiley, New York

    Google Scholar 

  59. Obbade S, Dion C, Rivenet M, Saadi M, Abraham F (2004) A novel open-framework with non-crossing channels in the uranyl vanadates A(UO2)4(VO4)3 (A=Li, Na). J Solid State Chem 177:2058–2067

    Article  CAS  Google Scholar 

  60. Rödenbeck C, Kärger J, Hahn K (1995) Tracer exchange and catalytic reactions in single-file systems. J Catal 157:656–664

    Article  Google Scholar 

  61. MacKinnon R (2004) Potassium channels and the atomic basis of selective ion conduction (Nobel lecture). Angew Chem Int Ed 43:4265–4277

    Article  CAS  Google Scholar 

  62. Eab CH, Lim SC (2010) Fractional generalized Langevin equation approach to single-file diffusion. Physica A 389:2510–2521

    Article  CAS  Google Scholar 

  63. Chandrashekhar GV, Bednowitz A, La Placa SJ (1979) A one dimensional sodium ion conductor. In: Vashista P, Mundy JN, Shenoy GK (eds) Fast ion transport in solids. Elsevier, Amsterdam

    Google Scholar 

  64. Bierlein JD, Vanherzeele H (1989) Potassium titanyl phosphate: properties and new applications. J Opt Soc Am B 6:622–633

    Article  CAS  Google Scholar 

  65. Dahaoui S, Hansen NK, Protas J, Krane H-G, Fischer K, Marnier G (1999) Electric properties of KTiOPO4 and NaTiOPO4 from temperature-dependent X-ray diffraction. J Appl Crystallogr 32:1–10

    Article  CAS  Google Scholar 

  66. Wellendorf R, Kaps C, Kriegel R (1996) On the Rb+ and K+ counterdiffusion in single crystals of K(TiO)PO4—a quasi-one-dimensional superionic conductor. Ionics 2:222–230

    Article  CAS  Google Scholar 

  67. Bierlein JD, Brixner LH, Ferretti A, Hsu, WY (1988) Process for producing an optical waveguide and the product therefrom. US Patent 4,740,265.

  68. Nalbandyan VB, Medvedev BS, Rykalova SI, Isakova SY (1988) Preparation and properties of the ceramic electrolytes of the sodium ferrititanate type. Neorg Mater 24:1030–1034 (In Russian)

    CAS  Google Scholar 

Download references

Acknowledgement

The author thanks D.N. Solodovnikova for her help with ion-exchange experiments mentioned in the last paragraph before “Conclusions” section (to be published elsewhere).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir B. Nalbandyan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nalbandyan, V.B. Ion exchange as a simple and effective tool for screening possible cation conductors. J Solid State Electrochem 15, 891–900 (2011). https://doi.org/10.1007/s10008-010-1139-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1139-0

Keywords

Navigation