Skip to main content
Log in

Microfabrication of thermoelectric modules by patterned electrodeposition using a multi-channel glass template

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A microfabrication process has been developed to elaborate microscale thermoelectric modules with high-aspect-ratio pillars assembled in a glass micromold, whose multi-channels are formed by combining mechanical machining and hot-pressing processes. This paper describes how to fill the multi-channel glass molds with thermoelectric materials by introducing a patterned electrochemical deposition method, in which a deposition cathode with two series of interdigital electrodes is designed. A reverse-pulsed electrodeposition method is found effective to overcome the difficulty for deep-filling that is required for fabricating thermoelectric pillars with high aspect ratios. A pulse circle of −200 mV for 4 s, +500 mV for 1 s, and 0 mV for 3 s (vs. saturated calomel electrode) was determined for preparing N-type Bi2Te3 arrays with a high aspect ratio exceeding ten from a solution containing 0.0075 M Bi3+ and 0.01 M HTeO +2 . The as-deposited pillars show reasonable electrical resistivity as compared with common bulk Bi2Te3 materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rowe DM (1995) CRC handbook of thermoelectrics. CRC, Washington D.C

    Book  Google Scholar 

  2. Snyder GJ, Lim JR, Huang CK, Fleurial JP (2003) Nat Mater 2:528–531

    Article  CAS  Google Scholar 

  3. Lim JR, Whitacre JF, Fleurial JP, Huang CK, Ryan MA, Myung NV (2005) Adv Mater 17:1488–1492

    Article  CAS  Google Scholar 

  4. Disalvo FJ (1999) Science 285:703–706

    Article  CAS  Google Scholar 

  5. Izaki R, Kaiwa N, Hoshino M, Yaginuma T, Yamaguchia S, Yamamoto A (2005) Appl Phys Lett 87:243508–243510

    Article  Google Scholar 

  6. Itoigawa K, Ueno H, Shiozaki M, Toriyama T, Sugiyama S (2005) J Micromech Microeng 15:S233–S238

    Article  CAS  Google Scholar 

  7. Goncalves LM, Couto C, Alpuim P, Correia JH (2008) J Micromech Microeng 18:064008–064012

    Article  Google Scholar 

  8. Li JF, Tanaka S, Umeki T, Sugimoto S, Esashi M, Watanabe R (2003) Sens Actuators A 108:97–102

    Article  Google Scholar 

  9. Glatz W, Schwyter E, Durrer L, Hierold C (2009) J Microelectromech Syst 18:763–772

    Article  CAS  Google Scholar 

  10. Wang W, Jia FL, Huang QH, Zhang JZ (2005) Microelectron Eng 77:223–229

    Article  CAS  Google Scholar 

  11. Poudel B, Hao Q, Ma Y, Lan YC, Minnich A, Yu B, Yan X, Wang DZ, Muto A, Vashaee D, Chen XY, Liu JM, Dresselhaus MS, Chen G, Ren Z (2008) Science 320:634–638

    Article  CAS  Google Scholar 

  12. Tittes K, Bund A, Plieth W, Bentien A, Paschen S, Plotner M, Grafe H, Fischer WJ (2003) J Solid State Electrochem 7:714–723

    Article  CAS  Google Scholar 

  13. Heo P, Hagiwara K, Ichino R, Okido M (2006) J Electrochem Soc 153:C213–C217

    Article  CAS  Google Scholar 

  14. Yoo BY, Huang CK, Lim JR, Herman J, Ryan MA, Fleurial JP, Myung NV (2005) Electrochim Acta 50:4371–4377

    Article  CAS  Google Scholar 

  15. Michel S, Diliberto S, Stein N, Bolle B, Boulanger C (2008) J Solid State Electrochem 12:95–101

    Article  CAS  Google Scholar 

  16. Lee J, Farhangfar S, Lee J, Cagnon L, Scholz R, Gosele U, Nielsch K (2008) Nanotechnology 19:365701–365708

    Article  Google Scholar 

  17. Liu C (2006) Foundations of MEMS. Pearson Education Inc., New Jersey

    Google Scholar 

  18. Liu DW, Li JF (2008) J Electrochem Soc 155:D493–D498

    Article  CAS  Google Scholar 

  19. Dixit P, Miao JM (2006) J Electrochem Soc 153:G552–G559

    Article  CAS  Google Scholar 

  20. Chandrasekar MS, Pushpavanam M (2008) Electrochim Acta 53:3313–3322

    Article  CAS  Google Scholar 

  21. Yang H, Chein RY, Tsai TH, Chang JC, Wu JC (2006) Microsyst Technol 12:187–192

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science and Technology of China (Grant no. 2007CB607505) and National Nature Science Foundation (Grant no. 50820145203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Feng Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, DW., Li, JF. Microfabrication of thermoelectric modules by patterned electrodeposition using a multi-channel glass template. J Solid State Electrochem 15, 479–484 (2011). https://doi.org/10.1007/s10008-010-1104-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1104-y

Keywords

Navigation