Skip to main content
Log in

Electrochemical deposition of Bi2Te3 for thermoelectric microdevices

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrolyses of solutions of bismuth oxide and tellurium oxide in nitric acid with molar ratios of Bi:Te=3:3–4:3 lead to cathodic deposits of films of bismuth telluride (Bi2Te3), an n-type semiconductor. Current densities of 2–5 mA/cm2 were applied. Voltammetric investigations showed that Bi2Te3 deposition occurred at potentials more negative than −0.125 V (Ag/AgCl, 3 M KCl). The deposit was identified as bismuth telluride (γ-phase) by X-ray analysis. Hall-effect measurements verified the n-type semiconducting behaviour. The films can be deposited in microstructures for thermoelectric microdevices like thermoelectric batteries or thermoelectric sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

References

  1. Plötner M (1998) Thermobatterie mit galvanisch abgeschiedenen Schenkeln. Abschlussbericht, TU Dresden

  2. Qu W, Plötner M, Fischer W-J (2001) J Micromech Microeng 11:146

    Article  CAS  Google Scholar 

  3. Okamoto H, Tanner LE (1986) In: Massalski TB (ed) Bi-Te (bismuth-tellurium) binary alloy phase diagrams. American Society for Metals, Metals Park, Ohio

  4. Gmelin (1964) Handbuch der anorganischen Chemie. Bismut Ergänzungsband. Verlag Chemie, Weinheim, p 800

  5. Magri P, Boulanger C (1995) AIP Conf Proc 316:277

    CAS  Google Scholar 

  6. Magri P, Boulanger C, Lecuire JM (1996) J Mater Chem 6:773

    CAS  Google Scholar 

  7. Fleurial J-P, Herman J-A, Snyder G-J, Ryan MA, Borshchevsky A, Huang C-K (2000) Mater Res Soc Symp 626:Z11.3.1

    Google Scholar 

  8. Montiel-Santillán T, Solorza O, Sánches H (2002) J Solid State Electrochem 6:433

    Article  Google Scholar 

  9. Cheaouni H, Bessieres J, Modaressi A, Heizmann JJ (2000) J Appl Electrochem 30:419

    Article  Google Scholar 

  10. Lenher V, Wakefield HF (1923) J Am Chem Soc 45:1423

    CAS  Google Scholar 

  11. Lang R, Faude E (1937) Z Anal Chem 108:260

    Google Scholar 

  12. Maclachlan JM, Kruesi WH, Fray DJ (1992) J Mater Sci 00:000

    Google Scholar 

  13. Fischer H (1954) Elektrolytische Abscheidung und Elektrokristallisation von Metallen. Springer, Berlin Göttingen Heidelberg, p 485

  14. Budevski E, Staikov G, Lorenz WJ (1996) Electrochemical phase formation and growth. VCH, Weinheim, p 71

  15. Mamantov G, Manning DL, Dale JM (1965) J Electroanal Chem 9:253

    Article  CAS  Google Scholar 

  16. Berzins T, Delahay P (1953) J Am Chem Soc 75:555

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the BMWi (Bundesministerium für Wirtschaft) and the AiF (Arbeitsgemeinschaft industrieller Forschungsvereinigungen "Otto von Guericke" e.V.), research no. 12118 BR. The authors are grateful to Dr. B. Hahne (Institute of Chemical Technology and Polymer Chemistry of the Martin-Luther-University Halle, Germany) and Dr. O. Rademacher (Institut of Inorganic Chemistry of the Technical University Dresden, Germany) for performing the X-ray diffraction measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waldfried Plieth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tittes, K., Bund, A., Plieth, W. et al. Electrochemical deposition of Bi2Te3 for thermoelectric microdevices. J Solid State Electrochem 7, 714–723 (2003). https://doi.org/10.1007/s10008-003-0378-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-003-0378-8

Keywords

Navigation