Skip to main content

Advertisement

Log in

Electrochemical oxidation behavior of bisphenol A at surfactant/layered double hydroxide modified glassy carbon electrode and its determination

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Electrochemical behavior of bisphenol A (BPA) at glassy carbon electrode-modified with layered double hydroxide (LDH) and anionic surfactant (sodium dodecyl sulfate) is investigated by electrochemical techniques. Compared with the bare electrode and LDH-modified electrode, the oxidation peak potential of BPA shifted negatively and the peak current increased significantly due to the enhanced accumulation of BPA via electrostatic interaction with LDH at the hydrophobic electrode surface. Some determination conditions such as LDH loading, pH, scan rate, accumulation potential, and accumulation time on the oxidation of BPA were optimized. And some kinetic parameters were investigated. Under the optimized conditions, the oxidation current was proportional to BPA concentration in the range of 8 × 10−9 to 2.808 × 10−6 M with the detection limit of 2.0 × 10−9 M by amperometry. The fabricated electrode showed good reproducibility, stability, and anti-interference. The proposed method was successfully applied to determine BPA in water samples, and the results were satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kloas W, Lutz I, Einspanier R (1999) Sci Total Environ 225:59–68

    Article  CAS  Google Scholar 

  2. Steinmetz R, Brown NG, Allen DL, Bigsby RM, Ben-Jonathan N (1997) Endocrinology 138:1780–1786

    Article  CAS  Google Scholar 

  3. Krishnan AV, Stathis P, Permuth SF, Tokes L, Feldman D (1993) Endocrinology 132:2279–2286

    Article  CAS  Google Scholar 

  4. Sohoni P, Tyler CR, Hurd K, Caunter J, Hetheridge M, Williams T, Woods C, Evans M, Toy R, Gargas M (2001) Environ Sci Technol 35:2917–2925

    Article  CAS  Google Scholar 

  5. Hiroi H, Tsutsumi O, Momoeda M, Takai Y, Osuga Y, Taketani Y (1999) Endocrine Journal 46:773–778

    Article  CAS  Google Scholar 

  6. Safe SH (2000) Environ Health Perspect 108:487–493

    CAS  Google Scholar 

  7. Staples C, Dome P, Klecka G, Oblock S, Harris L (1998) Chemosphere 36:2149–2173

    Article  CAS  Google Scholar 

  8. Goodson A, Robin H, Summerfield W, Cooper I (2004) Food Addi Contam 21:1015–1026

    Article  CAS  Google Scholar 

  9. Lopez-Cervantes J, Paseiro-Losada P (2003) Food Addi Contam 20:596–606

    Article  CAS  Google Scholar 

  10. Wen Y, Zhou B, Xu Y, Jin S, Feng Y (2006) J Chromatogr A 1133:21–28

    Article  CAS  Google Scholar 

  11. Shin H, Park C, Park S, Pyo H (2001) J Chromatogr A 912:119–125

    Article  CAS  Google Scholar 

  12. Sáchez-Acevedo ZC, Riu J, Rius FX (2009) Biosens Bioelectron 24:2842–2846

    Article  Google Scholar 

  13. Cavani F, Trifiro F, Vaccari A (1991) Catal Today 11:173–301

    Article  CAS  Google Scholar 

  14. Pavan PC, Crepaldi EL, Valim JB (2000) J Colloid Interface Sci 229:346–352

    Article  CAS  Google Scholar 

  15. Fernández L, Borrás C, Carrero H (2006) Electrochim Acta 52:872–884

    Article  Google Scholar 

  16. Hernandez M, Fernandez L, Borras C, Mostany J, Carrero H (2007) Anal Chim Acta 597:245–256

    Article  CAS  Google Scholar 

  17. Klumpp E, Contreras-Ortega C, Klahre P, Tino FJ, Yapar S, Portillo C, Stegen S, Queirolo F, Schwuger MJ (2003) Colloids Surf A 230:111–116

    Article  CAS  Google Scholar 

  18. Ulibarri MA, Pavlovic I, Barriga C, Hermosín MC, Cornejo J (2001) Appl Clay Sci 18:17–27

    Article  CAS  Google Scholar 

  19. Fernández L, Carrero H (2005) Electrochim Acta 50:1233–1240

    Article  Google Scholar 

  20. Scavetta E, Ballarin B, Berrettoni M, Carpani I, Giorgetti M, Tonelli D (2006) Electrochim Acta 51:2129–2134

    Article  CAS  Google Scholar 

  21. Zhang L, Zhang Q, Lu X, Li J (2007) Biosens Bioelectron 23:102–106

    Article  Google Scholar 

  22. Yin H, Cui L, Ai S, Fan H, Zhu L (2009) Electrochim Acta 55:603–610

    Article  Google Scholar 

  23. Kannan S (2004) J Mater Sci 39:6591–6596

    Article  CAS  Google Scholar 

  24. Kuramitz H, Nakata Y, Kawasaki M, Tanaka S (2001) Chemosphere 45:37–43

    Article  CAS  Google Scholar 

  25. Tanaka S, Nakata Y, Kimura T, Kawasaki M, Kuramitz H (2002) J Appl Electrochem 32:197–201

    Article  CAS  Google Scholar 

  26. Yin H, Zhou Y, Ai S (2009) J Electroanal Chem 626:80–88

    Article  CAS  Google Scholar 

  27. Murugananthan M, Yoshihara S, Rakuma T, Shirakashi T (2008) J Hazard Mater 154:213–220

    Article  CAS  Google Scholar 

  28. Ngundi M, Sadik O, Yamaguchi T, Suye S (2003) Electrochem Commun 5:61–67

    Article  CAS  Google Scholar 

  29. Yin H, Zhou Y, Xu J, Ai S, Cui L, Zhu L (2010) Anal Chim Acta 659:144–150

    Article  CAS  Google Scholar 

  30. Yin H, Zhou Y, Ai S, Chen Q, Zhu X, Liu X, Zhu L (2009) J Hazard Mater 174:236–243

    Article  Google Scholar 

  31. Ballesteros-Gómez A, Rubio S, Pérez-Bendito D (2009) J Chromatogr A 1216:449–469

    Article  Google Scholar 

  32. Luckza T (2008) Electrochim Acta 53:5725–5731

    Article  Google Scholar 

  33. Laviron E (1974) J Electroanal Chem 52:355–393

    Article  CAS  Google Scholar 

  34. Dempsey E, Diamond D, Collier A (2004) Biosens Bioelectron 20:367–377

    Article  CAS  Google Scholar 

  35. Mita D, Attanasio A, Arduini F, Diano N, Grano V, Bencivenga U, Rossi S, Amine A, Moscone D (2007) Biosens Bioelectron 23:60–65

    Article  CAS  Google Scholar 

  36. Notsu H, Tatsuma T, Fujishima A (2002) J Electroanal Chem 523:86–92

    Article  CAS  Google Scholar 

  37. Andreescu S, Sadik O (2004) Anal Chem 76:552–560

    Article  CAS  Google Scholar 

  38. Wang F, Yang J, Wu K (2009) Anal Chim Acta 638:23–28

    Article  CAS  Google Scholar 

  39. Huang W (2005) Bull Korean Chem Soc 26:1560–1564

    Article  CAS  Google Scholar 

  40. Chauke V, Matemadombo F, Nyokong T (2010) J Hazard Mater 178:180–186

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (no. 20775044) and the Natural Science Foundation of Shandong province, China (Y2006B20).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiyun Ai or Lusheng Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, H., Zhou, Y., Cui, L. et al. Electrochemical oxidation behavior of bisphenol A at surfactant/layered double hydroxide modified glassy carbon electrode and its determination. J Solid State Electrochem 15, 167–173 (2011). https://doi.org/10.1007/s10008-010-1089-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1089-6

Keywords

Navigation