Skip to main content
Log in

Electroanalytical Performance of Surfactant-Modified Composite Carbon Paste Electrode for the Sensitive and Selective Determination of Fast Sulphon Black F

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A sensitive and selective voltammetric sensor was fabricated by incorporating carbon paste into multiwalled carbon nanotubes, followed by drop coating of sodium dodecyl sulfate (SDS), onto the surface in an attempt to find an approachable method for the electrochemical analysis of Fast Sulphon Black F. This equipped SDS-modified composite carbon paste electrode (SDSMCCPE) exhibited an efficient electrocatalytic behavior in the oxidation of FSBF and portrayed a well resolved, irreversible oxidation peak at a potential of 0.716 V, with an enhanced current sensitivity of 34.50 µA in 0.2 M phosphate buffer solution of pH 6.5. The SDSMCCPE and bare composite carbon paste electrode were characterized via field-emission scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. The modified electrode exhibited two dynamic linear ranges between 2-40 and 45-200 µM and a promising detection limit of 2.4 × 10−8 M was found for the first linear range. Thus, the fabricated sensor is a promising methodology for the concurrent determination of FSBF, tartrazine and indigo carmine, and can also be used in the study of the potential interference of synthetic dyes. SDSMCCPE involves a simple fabrication procedure, has a quick response, has admirable stability, is reproducible and has antifouling effects.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 1
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. H.K. Maleha, C.T. Fakud, N. Mabuba, G.M. Peleyeju and O.A. Arotiba, The Determination of 2-Phenylphenol in the Presence of 4-Chlorophenol using Nano-Fe3O4/Ionic Liquid Paste Electrode as an Electrochemical Sensor, J. Colloid Interface Sci., 2019, 554, p 603–610

    Article  CAS  Google Scholar 

  2. H.K. Maleha, M. Shafieizadeh, M.A. Taher, F. Opoku, E.M. Kiarii, P.P. Govender, S. Ranjbari, M. Rezapour and Y. Orooji, The Role of Magnetite/Graphene Oxide Nano-Composite as a High-efficiency Adsorbent for Removal of Phenazopyridine Residues from Water Samples, an Experimental/Theoretical Investigation, J. Mol. Liq., 2020, 298, p 112040

    Article  CAS  Google Scholar 

  3. J. Tsemeugne, E.S. Fondjo, J.D. Tamokou, I. Tonle, I.C. Kengne, A.D. Ngongang, S.T. Lacmata, T. Rohand, J.R. Kuiate and B.L. Sondengam, Electrochemical Behavior and In-Vitro Antimicrobial Screening of Some Thienylazoaryls Dyes, Chem. Cent. J., 2017, 11(119), p 1–13

    Google Scholar 

  4. R. Kant, Textile Dyeing Industry an Environmental Hazard, J. Nat. Sci., 2012, 4(1), p 22–24

    CAS  Google Scholar 

  5. M.A. Hassaan and A.E. Nemr, Health and Environmental Impacts of Dyes: Mini Review, Am. J. Environ. Sci., 2017, 1(3), p 64–67

    Google Scholar 

  6. A.M. Umabala, P. Suresh and A.V. Prasada Rao, Effective Visible Light Photocatalytic Degradation of Congo Red and Fast Sulphon Black F Using H2O2 Sensitized Bivo4, J. Appl. Chem., 2016, 5(1), p 248–254

    CAS  Google Scholar 

  7. D. Yang, L. Zhu and X. Jiang, Nanoscience in Food and Agriculture, J. Electroanal. Chem., 2010, 640, p 17–22

    Article  CAS  Google Scholar 

  8. A. Chakraborty, S. Ahamed, S. Pal, and S. K. Saha, Cyclic Voltammetric Investigations of Thiazine Dyes on Modified Electrodes, ISRN Electrochem., 2013, 2013, p 1–9

    Article  CAS  Google Scholar 

  9. A.G. Fogg, A. Rahim, H.M. Yusoff and R. Ahmad, Cathodic Stripping Voltammetry of Copper-Complexed Reactive Dyes at a Hanging Mercury Drop Electrode: Reactive Violet 5, Talanta, 1998, 44(1), p 125–129

    Article  Google Scholar 

  10. M. Bijad, H.K. Maleh, M. Farsi and S.A. Shahidi, An Electrochemical-Amplified-Platform Based on the Nanostructure Voltammetric Sensor for the Determination of Carmoisine in the Presence of Tartrazine in Dried Fruit and Soft Drink Samples, J. Food Meas. Charact., 2018, 12, p 634–640

    Article  Google Scholar 

  11. H.K. Maleh, F.M. Alizadeh and A.L. Sanati, Electrochemical Sensors, a Bright Future in the Fabrication of Portable Kits in Analytical Systems, Chem. Rec., 2020, 20, p 1–12

    Google Scholar 

  12. S.A.R. Alavi Tabari, M.A. Khalilzadeh and H.K. Maleh, Simultaneous Determination of Doxorubicin and Dasatinib as Two Breast Anticancer Drugs Uses an Amplified Sensor with Ionic Liquid and ZnO Nanoparticle, J. Electroanal. Chem., 2018, 811, p 84–88

    Article  CAS  Google Scholar 

  13. A. Baghizadeh, H.K. Maleh, Z. Khoshnama, A. Hassankhani and M. Abbasghorbani, A Voltammetric Sensor for Simultaneous Determination of Vitamin C and Vitamin B6 in Food Samples Using ZrO2 Nanoparticle/Ionic Liquids Carbon Paste Electrode, Food Anal. Methods, 2015, 8, p 549–557

    Article  Google Scholar 

  14. M. Miraki, H.K. Maleh, M.A. Taher, S. Cheraghi, F. Karimi, S. Agarwal and V.K. Gupta, Voltammetric Amplified Platform Based on Ionic Liquid/NiO Nanocomposite for Determination of Benserazide and Levodopa, J. Mol. Liq., 2019, 278, p 672–676

    Article  CAS  Google Scholar 

  15. H.K. Maleh, M. Sheikhshoaie, I. Sheikhshoaie, M. Ranjbar, J. Alizadeh, N.W. Maxakato and A. Abbaspourrad, A Novel Electrochemical Epinine Sensor using Amplified CuO Nanoparticles and a N-Hexyl-3-Methylimidazolium Hexafluorophosphate Electrode, New J. Chem., 2019, 43(5), p 2362–2367

    Article  Google Scholar 

  16. M.R. Shahmiri, A. Bahari, H.K. Maleh, R. Hosseinzadeh and N. Mirni, Ethynyl ferrocene–NiO/MWCNT Nanocomposite Modified Carbon Paste Electrode as a Novel Voltammetric Sensor for Simultaneous Determination of Glutathione and Acetaminophen, Sens. Actuator B-Chem., 2013, 177, p 70–77

    Article  CAS  Google Scholar 

  17. M. Najafi, M.A. Khalilzadeh and H.K. Maleh, A New Strategy for Determination of Bisphenol A in the Presence of Sudan I Using a ZnO/CNTs/Ionic Liquid Paste Electrode in Food Samples, Food Chem., 2014, 158, p 125–131

    Article  CAS  Google Scholar 

  18. M. Bijad, H.K. Maleh and M.A. Khalilzadeh, Application of ZnO/CNTs Nanocomposite Ionic Liquid Paste Electrode as a Sensitive Voltammetric Sensor for Determination of Ascorbic Acid in Food Samples, Food Anal. Methods, 2013, 6, p 1639–1647

    Article  Google Scholar 

  19. M. Khodari, E.M. Rabie and A.A. Shamroukh, Carbon Paste Electrode Modified by Multiwalled Carbon Nanotube “for Electrochemical Determination” of Vitamin C, Ijbbmb., 2018, 6(2), p 58–69

    CAS  Google Scholar 

  20. B.M. Amrutha, J.G. Manjunatha, S. Aarti Bhatt and N. Hareesha, Electrochemical Analysis of Evans Blue by Surfactant Modified Carbon Nanotube Paste Electrode, J. Mater. Environ. Sci., 2019, 10(7), p 668–676

    CAS  Google Scholar 

  21. M. Ghaedi, S. Naderi, M. Montazerozohori, F. Taghizadeh and A. Asghari, Chemically Modified Multiwalled Carbon Nano Tube Carbon Paste Electrode for Copper Determination, Arab. J. Chem., 2017, 10, p 934–943

    Article  Google Scholar 

  22. A.A. Ensafi, H. Bahrami, H.K. Maleh and S. Mallakpour, Carbon Paste Electrode Prepared from Chemically Modified Multiwall Carbon Nanotubes for the Voltammetric Determination of Isoprenaline in Pharmaceutical and Urine Samples, Chin. J. Catal., 2012, 33(12), p 1919–1926

    Article  CAS  Google Scholar 

  23. Z.S. Azad, M.A. Taher, S. Cheraghi and H.K. Maleh, A Nanostructure Voltammetric Platform Amplified with Ionic Liquid for Determination of Tert-butylhydroxyanisole in the Presence Kojic Acid, J. Food Meas. Charact., 2019, 13, p 1781–1787

    Article  Google Scholar 

  24. H.K. Maleh, A.F. Shojaei, K. Tabatabaeian, F. Karimi, S. Shakeri and R. Moradi, Simultaneous Determination of 6-Mercaptopruine, 6-Thioguanine and Dasatinib as Three Important Anticancer Drugs using Nanostructure Voltammetric Sensor Employing Pt/MWCNTs and 1-Butyl-3-Methylimidazolium Hexafluoro Phosphate, Biosens. Bioelectron., 2016, 86(15), p 879–884

    Article  CAS  Google Scholar 

  25. J.B. Parsa and M. Abbasi, Application of in Situ Electrochemically Generated Ozone for Degradation of Anthraquninone Dye Reactive Blue 19, J. Appl. Electrochem., 2012, 42, p 435–442

    Article  CAS  Google Scholar 

  26. T. Thomas, R.J. Mascarenhas, O.J. D’Souza, S. Detriche, Z. Mekhalif and P. Martis, Pristine Multi-Walled Carbon Nanotubes/SDS Modified Carbon Paste Electrode as an Amperometric Sensor for Epinephrine, Talanta, 2014, 125, p 352–360

    Article  CAS  Google Scholar 

  27. N. Pikroh and P. Vanalabhpatana, Bismuth-Carbon Nanotube Composite Modified Carbon Paste Electrode for the Determination of Heavy Metal Ions, ECS Trans., 2013, 45(20), p 39–46

    Article  CAS  Google Scholar 

  28. J.G. Manjunatha, M. Deraman, N.H. Basri, N.S. Mohd Nor, I.A. Talib and N. Ataollahi, Sodium Dodecyl Sulfate Modified Carbon Nanotubes Paste Electrode as a Novel Sensor for the Simultaneous Determination of Dopamine, Ascorbic Acid, and Uric Acid, CR Chim., 2014, 17(5), p 465–476

    Article  CAS  Google Scholar 

  29. J. Zheng and X. Zhou, Sodium Dodecyl Sulfate-Modified Carbon Paste Electrodes for Selective Determination of Dopamine in the Presence of Ascorbic Acid, Bioelectrochemistry, 2007, 70(2), p 408–415

    Article  CAS  Google Scholar 

  30. R. Ojani, E. Tirgari and J.B. Raoof, Evaluation of Sodium Dodecyl Sulfate Effect on Electrocatalytic Properties of Poly(1-Naphtylamine)/Nickel-Modified Carbon Paste Electrode as an Efficient Electrode Toward Electrooxidation of Methanol, J. Solid State Electr., 2016, 20, p 2305–2313

    Article  CAS  Google Scholar 

  31. C. Raril and J.G. Manjunatha, A Simple Approach for the Electrochemical Determination of Vanillin at Ionic Surfactant Modified Graphene Paste Electrode, Microchem. J., 2020, 154, p 1–24

    Article  CAS  Google Scholar 

  32. M. Zhu, H. Ye, M. Lai, J. Ye, J. Kuang, Y. Chen, J. Wang and Q. Mei, Differential Pulse Stripping Voltammetric Determination of Metronidazole with Graphene-Sodium Dodecyl Sulfate Modified Carbon Paste Electrode, Int. J. Electrochem. Sci., 2018, 13, p 4100–4114

    Article  CAS  Google Scholar 

  33. M.M. Rahman and I.C. Jeon, Studies of Electrochemical Behavior of SWNT-Film Electrodes, J. Braz. Chem. Soc., 2007, 18(6), p 4100–4114

    Article  Google Scholar 

  34. D.S. Nayak and N.P. Shetti, Electrochemical Oxidation of Provitamin B5, D-panthenol and its Analysis in Spiked Human Urine, J Anal, Sci Technol., 2016, 12(7), p 1–8

    Google Scholar 

  35. K. Mukdasai and S. Mukdasai, The Fabrication of in Situ Triton X-100 on Multi-Walled Carbon Nanotubes Modified Gold Electrode for Sensitive Determination of Caffeine, Int. J. Electrochem. Sci., 2018, 13, p 58–70

    Article  CAS  Google Scholar 

  36. N. Maouche and B. Nessark, Cyclic Voltammetry and Impedance Spectroscopy Behavior Studies of Polyterthiophene Modified Electrode, Int. J. Electrochem., 2011, 2011, p 1–5

    Article  CAS  Google Scholar 

  37. J. Chena, B. Li, J. Zhenga, J. Zhaoa, H. Jinga and Z. Zhu, Polyaniline Nanofiber/Carbon Film as Flexible Counter Electrodes in Platinum-Free Dye-Sensitized Solar Cells, Electrochim. Acta, 2011, 56(12), p 4624–4630

    Article  CAS  Google Scholar 

  38. V. Prathipa and A.S. Raja, Electrochemical Decolourization Process of Synthetic Toxic Azo Dyes with in Situ Electro-Generated Active Chlorine, Int. J. Chemtech Res., 2017, 10(4), p 182–189

    CAS  Google Scholar 

  39. J.B. Raoofa, F. Chekin, R. Ojani and S. Barari, Carbon Paste Electrode Incorporating Multi-Walled Carbon Nanotube/Ferrocene as a Sensor for the Electroanalytical Determination of N-Acetyl-l-Cysteine in the Presence of Tryptophan, J. Chem. Sci., 2013, 125, p 283–289

    Article  CAS  Google Scholar 

  40. N. Hareesha and J.G. Manjunatha, Surfactant and Polymer Layered Carbon Composite Electrochemical Sensor for the Analysis of Estriol with Ciprofloxacin, Mater. Res. Innov., 2019, 24(6), p 1–14

    Google Scholar 

  41. W. Guo, M. Geng, L. Zhou, S. Chao, R. Yang and H. An, Multi-Walled Carbon Nanotube Modified Electrode for Sensitive Determination of an Anesthetic Drug: Tetracaine Hydrochloride, Int. J. Electrochem. Sci., 2013, 8, p 5369–5381

    CAS  Google Scholar 

  42. J.G. Manjunatha, A New Electrochemical Sensor Based on Modified Carbon Nanotube-Graphite Mixture Paste Electrode for Voltammetric Determination of Resorcinol, Asian J. Pharm. Clin. Res., 2017, 10(12), p 295–300

    Article  CAS  Google Scholar 

  43. S.D. Bukkitgar, N.P. Shetti, R.M. Kulkarni and S.T. Nandibewoor, Electro-Sensing Base for Mefenamic Acid on 5% Barium-Doped Zinc Oxide Nanoparticles Modified Electrode and Its Analytical Application, Rsc Adv., 2015, 5(127), p 104891–104899

    Article  CAS  Google Scholar 

  44. S.D. Bukkitgar, N.P. Shetti and R.M. Kulkarni, Construction of Nanoparticles Composite Sensor for Atorvastatin and Its Determination in Pharmaceutical and Urine Samples, Sens. Actuat B-Chem., 2018, 255(2), p 1462–1470

    Article  CAS  Google Scholar 

  45. N.P. Shetti, S.J. Malode and S.T. Nandibewoor, Electrochemical Behavior of an Antiviral Drug Acyclovir at Fullerene-C (60)-Modified Glassy Carbon Electrode, Bioelectrochemistry, 2012, 88, p 76–83

    Article  CAS  Google Scholar 

  46. N. Hareesha and J.G. Manjunatha, Elevated and Rapid Voltammetric Sensing of Riboflavin at Poly (Helianthin Dye) Blended Carbon Paste Electrode with Heterogeneous Rate Constant Elucidation, J. Iran. Chem. Soc., 2020, 17, p 1507–1519

    Article  Google Scholar 

  47. J.G. Manjuntha and G.K. Jayaprakash, Electrooxidation and Determination of Estriol using a Surfactant Modified Nanotube Paste Electrode, Eurasian J. Anal. Chem., 2019, 14(1), p 1–11

    Google Scholar 

  48. H. Beitollahi and I. Sheikhshoaie, Electrochemical Behavior of Carbon Nanotube/Mn(III) Salen Doped Carbon Paste Electrode and Its Application for Sensitive Determination of N-acetylcysteine in the Presence of Folic Acid, Int. J. Electrochem. Sci., 2012, 7(8), p 7684–7698

    CAS  Google Scholar 

  49. B.M. Amrutha, J.G. Manjunatha, A.S. Bhatt, C. Raril and P.A. Pushpanjali, Electrochemical Sensor for the Determination of Alizarin Red-S at Non-ionic Surfactant Modified Carbon Nanotube Paste Electrode, Phys. Chem. Res., 2019, 7(3), p 523–533

    CAS  Google Scholar 

  50. P.A. Pushpanjali, J.G. Manjunatha and M.T. Shreenivas, The Electrochemical Resolution of Ciprofloxacin, Riboflavin and Estriol Using Anionic Surfactant and Polymer-Modified Carbon Paste Electrode, Chem. Select., 2019, 4(46), p 13427–13433

    CAS  Google Scholar 

  51. D. Thomas, Z. Rasheed, J.S. Jagan and K.G. Kumar, Study of Kinetic Parameters and Development of a Voltammetric Sensor for the Determination of Butylated Hydroxyanisole (BHA) in Oil Samples, Int. J. Food Sci. Technol., 2015, 52, p 6719–6726

    Article  CAS  Google Scholar 

  52. G.S. Garbellini, R.C. Rocha-Filho and O.F. Filho, Voltammetric Determination of Ciprofloxacin in Urine Samples and its Interaction with DNA on a Cathodically Pretreated Boron-Doped Diamond Electrode, Anal. Methods, 2015, 7(8), p 3411–3418

    Article  CAS  Google Scholar 

  53. J.G. Manjunatha, M. Deraman, N.H. Basri and I.A. Talib, Fabrication of Poly (Solid Red A) Modified Carbon Nano Tube Paste Electrode and its Application for Simultaneous Determination of Epinephrine, Uric Acid and Ascorbic Acid, Arab. J. Chem., 2018, 11(2), p 149–158

    Article  CAS  Google Scholar 

  54. A.P. Gonzalez, O.G. Beltrán and E. Nagles, Detection of Sunset Yellow by Adsorption Voltammetry at Glassy Carbon Electrode Modified with Chitosan, Int. J. Electrochem. Sci., 2018, 13, p 5005–5015

    Article  CAS  Google Scholar 

  55. S.M. Ghoreishi, M. Behpoura and M. Golestaneha, Simultaneous Voltammetric Determination of Brilliant Blue and Tartrazine in Real Samples at the Surface of a Multi-Walled Carbon Nanotube Paste Electrode, Anal. Methods, 2011, 3(12), p 2842–2847

    Article  CAS  Google Scholar 

  56. J.G. Manjunatha, A Surfactant Enhanced Graphene Paste Electrode as an Effective Electrochemical Sensor for the Sensitive and Simultaneous Determination of Catechol and Resorcinol, Chem. Data Coll., 2020, 25, p 1–24

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamballi Gangadharappa Gowda Manjunatha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monnappa, A.B., Manjunatha, J.G.G. & Bhatt, A.S. Electroanalytical Performance of Surfactant-Modified Composite Carbon Paste Electrode for the Sensitive and Selective Determination of Fast Sulphon Black F. J. of Materi Eng and Perform 30, 1683–1693 (2021). https://doi.org/10.1007/s11665-021-05466-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05466-0

Keywords

Navigation