Skip to main content

Advertisement

Log in

Hybrid organic–inorganic materials: from child’s play to energy applications

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The field of hybrids has boomed since its initial conception with silicones as structural materials to the wealth of different types of hybrid materials studied nowadays as functional materials. Hybrids based on conducting polymers and a great variety of inorganic species constitute a growing area of this field. We present a brief review of the intersection between conducting polymer hybrids and electrochemical applications to energy storage and conversion. But beyond examples of hybrids active in batteries, supercapacitors, solar or fuel cells, we have tried to convey the standing challenges concerning the design of chemically (and electrochemically) complex hybrid systems with components and building blocks ranging from extended oxides or nanoparticles to carbon or oxide nanotubes, to clusters and to molecules and the opportunities arising from their integration with conducting polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gomez-Romero P, Sanchez C (2004) Functional hybrid materials. Wiley-VCH, Weinheim

    Google Scholar 

  2. Gomez-Romero P (2001) Hybrid organic–inorganic materials—in search of synergic activity. Adv Mater 13(3):163–174

    Article  CAS  Google Scholar 

  3. Ruiz-Hitzky E (2003) Functionalizing inorgnic solids: towards organic–inorganic nanostructured materials for intelligent and bioinspired systems. Chem Rec 3(2):88–100

    Article  CAS  Google Scholar 

  4. Ruiz-Hitzky ER, Darder M, Aranda P (2005) Functional biopolymer nanocomposites based on layered solids. J Mater Chem 15(35–36):3650–3662

    Article  CAS  Google Scholar 

  5. Pomogailo AD (2005) Hybrid intercalative nanocomposites. Inorg Mater 41:S47–S74

    Article  CAS  Google Scholar 

  6. Pomogailo AD (2006) Synthesis and intercalation chemistry of hybrid organo-inorganic nanocomposites. Polym Sci Ser C+ 48:85–111

    Article  Google Scholar 

  7. Shea KJ, Loy DA (2001) A mechanistic investigation of gelation. The sol–gel polymerization of precursors to bridged polysilsesquioxanes Acc. Chem Res 34(9):707–716

    Article  CAS  Google Scholar 

  8. Ogoshi T, Chujo Y (2005) Organic–inorganic polymer hybrids prepared by the sol–gel method. Compos Interface 11(8–9):539–566

    Article  CAS  Google Scholar 

  9. Yoshida T, Zhang JB, Komatsu D, Sawatani S, Minoura H, Pauporte T, Lincot D, Oekermann T, Schlettwein D, Tada H, Wohrle D, Funabiki K, Matsui M, Miura H, Yanagi H (2009) Electrodeposition of inorganic/organic hybrid thin films. Adv Funct Mater 19(1):17–43

    Article  CAS  Google Scholar 

  10. Althues H, Henle J, Kaskel S (2007) Functional inorganic nanofillers for transparent polymers. Chem Soc Rev 36(9):1454–1465

    Article  CAS  Google Scholar 

  11. Sanchez C, Julian B, Belleville P, Popall M (2005) Applications of hybrid organic–inorganic nanocomposites. J Mater Chem 15(35–36):3559–3592

    Article  CAS  Google Scholar 

  12. Malinauskas A, Malinauskiene J, Ramanavicius A (2005) Conducting polymer-based nanostructurized materials: electrochemical aspects. Nanotechnology 16(10):R51–R62

    Article  CAS  Google Scholar 

  13. Binnemans K (2009) Lanthanide-based luminescent hybrid materials. Chem Rev 109(9):4283–4374

    Article  CAS  Google Scholar 

  14. Guo XM, Guo HD, Fu LS, Carlos LD, Ferreira RAS, Sun LN, Deng RP, Zhang HJ (2009) Novel near-infrared luminescent hybrid materials covalently linking with lanthanide [Nd(III), Er(III), Yb(III), and Sm(III)] complexes via a primary beta-diketone ligand: synthesis and photophysical studies. J Phys Chem C 113(28):12538–12545

    Article  CAS  Google Scholar 

  15. Cunha-Silva L, Lima S, Ananias D, Silva P, Mafra L, Carlos LD, Pillinger M, Valente AA, Paz FAA, Rocha J (2009) Multi-functional rare-earth hybrid layered networks: photoluminescence and catalysis studies. J Mater Chem 19(17):2618–2632

    Article  CAS  Google Scholar 

  16. He T, Yao JN (2006) Photochromism in composite and hybrid materials based on transition-metal oxides and polyoxometalates. Prog Mater Sci 51(6):810–879

    Article  CAS  Google Scholar 

  17. Hatchett DW, Josowicz M (2008) Composites of intrinsically conducting polymers as sensing nanomaterials. Chem Rev 108(2):746–769

    Article  CAS  Google Scholar 

  18. Rajesh, Ahuja T, Kumar D (2009) Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications. Sensor Actuat B-Chem 136(1):275–286

    Article  CAS  Google Scholar 

  19. Holder E, Tessler N, Rogach AL (2008) Hybrid nanocomposite materials with organic and inorganic components for opto-electronic devices. J Mater Chem 18(10):1064–1078

    Article  CAS  Google Scholar 

  20. Guenes S, Sariciftci NS (2008) Hybrid solar cells. Inorg Chim Acta 361(3):581–588

    Article  CAS  Google Scholar 

  21. Asensio JA, Gomez-Romero P (2005) Recent developments on proton conducting poly(2,5-benzimidazole) (ABPBI) membranes for high temperature polymer electrolyte membrane fuel cells. Fuel Cells 5(3):336–343

    Article  CAS  Google Scholar 

  22. Herring AM (2006) Inorganic–polymer composite membranes for proton exchange membrane fuel cells. Polym Rev 46(3):245–296

    Article  CAS  Google Scholar 

  23. Jones DJ, Roziere J (2008) Advances in the development of inorganic–organic membranes for fuel cell applications. Fuel Cells I 215:219–264

    Article  CAS  Google Scholar 

  24. Kundu PP, Sharma V, Shul YG (2007) Composites of proton-conducting polymer electrolyte membrane in direct methanol fuel cells. Crit Rev Solid State 32(1–2):51–66

    CAS  Google Scholar 

  25. Muñoz-Rojas D, Oro-Sole J, Ayyad O, Gomez-Romero P (2008) Facile one-pot synthesis of self-assembled silver@polypyrrole core/shell nanosnakes. Small 4(9):1301–1306

    Article  CAS  Google Scholar 

  26. Muñoz-Rojas D, Oro-Sole J, Gomez-Romero P (2009) Spontaneous self-assembly of Cu2O@PPy nanowires and anisotropic crystals. Chem Commun 39:5913–5915

    Article  CAS  Google Scholar 

  27. Ayyad O, Muñoz-Rojas D, Oró-Solé J, Gómez-Romero P (2010) From silver nanoparticles to nanostructures through matrix chemistry. J Nanopart Res 12:337–345

    Article  CAS  Google Scholar 

  28. Shu JH, Qiu W, Zheng SQ (2009) Polyaniline/gold nanoparticle composites. Prog Chem 21(5):1015–1022

    CAS  Google Scholar 

  29. Reddy KR, Lee KP, Lee Y, Gopalan AI (2008) Facile synthesis of conducting polymer–metal hybrid nanocomposite by in situ chemical oxidative polymerization with negatively charged metal nanoparticles. Mater Lett 62(12–13):1815–1818

    Article  CAS  Google Scholar 

  30. Pacios R, Marcilla R, Pozo-Gonzalo C, Pomposo JA, Grande H, Aizpurua J, Mecerreyes D (2007) Combined electrochromic and plasmonic optical responses in conducting polymer/metal nanoparticle films. J Nanosci Nanotechnol 7(8):2938–2941

    Article  CAS  Google Scholar 

  31. Li WG, Jia QX, Wang HL (2006) Facile synthesis of metal nanoparticles using conducting polymer colloids. Polymer 47(1):23–26

    Article  CAS  Google Scholar 

  32. Pillalamarri SK, Blum FD, Tokuhiro AT, Bertino MF (2005) One-pot synthesis of polyaniline—metal nanocomposites. Chem Mater 17(24):5941–5944

    Article  CAS  Google Scholar 

  33. Vasilyeva SV, Vorotyntsev MA, Bezverkhyy I, Lesniewska E, Heintz O, Chassagnon R (2008) Synthesis and characterization of palladium nanoparticle/polypyrrole composites. J Phys Chem C 112(50):19878–19885

    Article  CAS  Google Scholar 

  34. Xing SX, Tan LH, Yang MX, Pan M, Lv YB, Tang QH, Yang YH, Chen HY (2009) Highly controlled core/shell structures: tunable conductive polymer shells on gold nanoparticles and nanochains. J Mater Chem 19(20):3286–3291

    Article  CAS  Google Scholar 

  35. Guo RR, Li GT, Zhang WX, Shen GQ, Shen DZ (2005) Superlong polypyrrole nanowires aligned within ordered mesoporous silica channels. Chemphyschem 6(10):2025–2028

    Article  CAS  Google Scholar 

  36. Dong JP, Hu YY, Xu JQ, Qu XM, Zhao CJ (2009) Nanocomposite with polypyrrole encapsulated within SBA-15 mesoporous silica: preparation and its electrochemical application. Electroanal 21(16):1792–1798

    Article  CAS  Google Scholar 

  37. Fang FF, Choi HJ, Ahn WS (2009) Electroactive response of mesoporous silica and its nanocomposites with conducting polymers. Compos Sci Technol 69(13):2088–2092

    Article  CAS  Google Scholar 

  38. Lira-Cantu M, Gomez-Romero P (1999) Synthesis and characterization of intercalate phases in the organic–inorganic polyaniline/V2O5 system. J Solid State Chem 147(2):601–608

    Article  CAS  Google Scholar 

  39. Lira-Cantu M, Gomez-Romero P (1999) The organic–inorganic polyaniline/V2O5 system—application as a high-capacity hybrid cathode for rechargeable lithium batteries. J Electrochem Soc 146(6):2029–2033

    Article  CAS  Google Scholar 

  40. Kulesza PJ, Miecznikowski K, Chojak M, Malik MA, Zamponi S, Marassi R (2001) Electrochromic features of hybrid films composed of polyaniline and metal hexacyanoferrate. Electrochim Acta 46(28):4371–4378

    Article  CAS  Google Scholar 

  41. Kulesza PJ, Miecznikowski K, Malik MA, Galkowski M, Chojak M, Caban K, Wieckowski A (2001) Electrochemical preparation and characterization of hybrid films composed of Prussian blue type metal hexacyanoferrate and conducting polymer. Electrochim Acta 46(26–27):4065–4073

    Article  CAS  Google Scholar 

  42. Ernst A, Makowski O, Kowalewska B, Miecznikowski K, Kulesza PJ (2007) Hybrid bioelectrocatalyst for hydrogen peroxide reduction: immobilization of enzyme within organic–inorganic film of structured Prussian Blue and PEDOT. Bioelectrochemistry 71(1):23–28

    Article  CAS  Google Scholar 

  43. Makowski O, Kowalewska B, Szymanska D, Stroka J, Miecznikowski K, Palys B, Malik MA, Kulesza PJ (2007) Controlled fabrication of multilayered 4-(pyrrole-1-yl) benzoate supported poly(3,4-ethylenedioxythiophene) linked hybrid films of Prussian blue type nickel hexacyanoferrate. Electrochim Acta 53(3):1235–1243

    Article  CAS  Google Scholar 

  44. Gomez-Romero P, LiraCantu M (1997) Hybrid organic–inorganic electrodes: the molecular material formed between polypyrrole and the phosphomolybdate anion. Adv Mater 9(2):144–147

    Article  CAS  Google Scholar 

  45. Lira-Cantu M, Gomez-Romero P (1998) Electrochemical and chemical syntheses of the hybrid organic–inorganic electroactive material formed by phosphomolybdate and polyaniline. Application as cation-insertion electrodes. Chem Mater 10(3):698–704

    Article  CAS  Google Scholar 

  46. Kulesza PJ, Chojak M, Miecznikowski K, Lewera A, Malik MA, Kuhn A (2002) Polyoxometallates as inorganic templates for monolayers and multilayers of ultrathin polyaniline. Electrochem Commun 4(6):510–515

    Article  CAS  Google Scholar 

  47. Adamczyk L, Kulesza PJ, Miecnikowski K, Palys B, Chojak M, Krawczyk D (2005) Effective charge transport in poly(3,4-ethylenedioxythiophene) based hybrid films containing polyoxometallate redox centers. J Electrochem Soc 152(3):E98–E103

    Article  CAS  Google Scholar 

  48. Vaillant J, Lira-Cantu M, Cuentas-Gallegos K, Casañ-Pastor N, Gomez-Romero P (2006) Chemical synthesis of hybrid materials based on PAni and PEDOT with polyoxometalates for electrochemical supercapacitors. Prog Solid State Chem 34(2–4):147–159

    Article  CAS  Google Scholar 

  49. Torres-Gomez G, Gomez-Romero P (1998) Conducting organic polymers with electroactive dopants. Synthesis and electrochemical properties of hexacyanoferrate-doped polypyrrole. Synth Met 98(2):95–102

    Article  CAS  Google Scholar 

  50. Gomez-Romero P, Torres-Gomez G (2000) Molecular batteries: harnessing Fe(CN)(6)(3-) electroactivity in hybrid polyaniline–hexacyanoferrate electrodes. Adv Mater 12(19):1454–1456

    Article  CAS  Google Scholar 

  51. Peng ZH (2004) Rational synthesis of covalently bonded organic–inorganic hybrids. Angew Chem Int Edit 43(8):930–935

    Article  CAS  Google Scholar 

  52. Gomez-Romero P, Chojak M, Cuentas-Gallegos K, Asensio JA, Kulesza PJ, Casañ-Pastor N, Lira-Cantu M (2003) Hybrid organic–inorganic nanocomposite materials for application in solid state electrochemical supercapacitors. Electrochem Commun 5(2):149–153

    Article  CAS  Google Scholar 

  53. Kamat PV (2007) Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J Phys Chem C 111(7):2834–2860

    Article  CAS  Google Scholar 

  54. Nguyen TP, Lee CW, Hassen S et al (2009) Hybrid nanocomposites for optical applications. Solid State Sci 11(10):18010–14

    Article  CAS  Google Scholar 

  55. Conway BE (1991) Transition from supercapacitor to battery behavior in electrochemical energy-storage. J Electrochem Soc 138(6):1539–1548

    Article  CAS  Google Scholar 

  56. Miller JM, Dunn B, Tran TD, Pekala RW (1997) Deposition of ruthenium nanoparticles on carbon aerogels for high energy density supercapacitor electrodes. J Electrochem Soc 144(12):L309–L311

    Article  CAS  Google Scholar 

  57. Subramanian V, Zhu HW, Vajtai R, Ajayan PM, Wei BQ (2005) Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J Phys Chem B 109(43):20207–20214

    Article  CAS  Google Scholar 

  58. Rudge A, Raistrick I, Gottesfeld S, Ferraris JP (1994) A study of the electrochemical properties of conducting polymers for application in electrochemical capacitors. Electrochim Acta 39(2):273–287

    Article  CAS  Google Scholar 

  59. Frackowiak E, Beguin F (2002) Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon 40(10):1775–1787

    Article  CAS  Google Scholar 

  60. GomezRomero P, CasanPastor N (1996) Photoredox chemistry in oxide clusters. Photochromic and redox properties of polyoxometalates in connection with analog solid state colloidal systems. J Phys Chem 100(30):12448–12454

    Article  CAS  Google Scholar 

  61. Gomez-Romero P (1997) Polyoxometalates as photoelectrochemical models for quantum-sized colloidal semiconducting oxides. Solid State Ionics 101:243–248

    Article  Google Scholar 

  62. Cuentas-Gallegos AK, Lira-Cantu M, Casañ-Pastor N, Gomez-Romero P (2005) Nanocomposite hybrid molecular materials for application in solid-state electrochemical supercapacitors. Adv Funct Mater 15(7):1125–1133

    Article  CAS  Google Scholar 

  63. Kanatzidis MG, Wu CG, Marcy HO, Kannewurf CR (1989) Conductive polymer bronzes—intercalated polyaniline in V2O5 xerogels. J Am Chem Soc 111(11):4139–4141

    Article  CAS  Google Scholar 

  64. Liu YJ, Degroot DC, Schindler JL, Kannewurf CR, Kanatzidis MG (1993) Stabilization of anilinium in vanadium(V) oxide xerogel and its post-intercalative polymerization to poly(aniline) in air. Chem Commun (7):593–596

  65. Kanatzidis MG, Wu CG, Marcy HO, Degroot DC, Kannewurf CR (1990) Conductive polymer–oxide bronze nanocomposites–intercalated polythiophene in V2O5 xerogels. Chem Mater 2(3):222–224

    Article  CAS  Google Scholar 

  66. Goward GR, Leroux F, Nazar LF (1998) Poly(pyrrole) and poly(thiophene)/vanadium oxide interleaved nanocomposites: positive electrodes for lithium batteries. Electrochim Acta 43(10–11):1307–1313

    Article  CAS  Google Scholar 

  67. Wong HP, Dave BC, Leroux F, Harreld J, Dunn B, Nazar LF (1998) Synthesis and characterization of polypyrrole vanadium pentoxide nanocomposite aerogels. J Mater Chem 8(4):1019–1027

    Article  CAS  Google Scholar 

  68. Boyano I, Bengoechea M, de Meatza I, Miguel O, Cantero I, Ochoteco E, Grande H, Lira-Cantu M, Gomez-Romero P (2007) Influence of acids in the Ppy/V2O5 hybrid synthesis and performance as a cathode material. J Power Sources 174(2):1206–1211

    Article  CAS  Google Scholar 

  69. Boyano I, Bengoechea M, de Meatza I, Miguel O, Cantero I, Ochoteco E, Rodriguez J, Lira-Cantu M, Gomez-Romero P (2007) Improvement in the Ppy/V2O5 hybrid as a cathode material for Li ion batteries using PSA as an organic additive. J Power Sources 166(2):471–477

    Article  CAS  Google Scholar 

  70. Nazar LF, Zhang Z, Zinkweg D (1992) Insertion of poly(para-phenylenevinylene) in layered MoO3. J Am Chem Soc 114(15):6239–6240

    Article  CAS  Google Scholar 

  71. Kerr TA, Leroux F, Nazar LF (1998) Surfactant-mediated incorporation of poly(p-phenylene) into MoO3. Chem Mater 10(10):2588–2591

    Article  CAS  Google Scholar 

  72. Bissessur R, Degroot DC, Schindler JL, Kannewurf CR, Kanatzidis MG (1993) Inclusion of poly(aniline) into MoO3. Chem Commun (8):687–689

  73. Kerr TA, Wu H, Nazar LF (1996) Concurrent polymerization and insertion of aniline in molybdenum trioxide: formation and properties of a [poly(aniline)]0.24MoO3 nanocomposite. Chem Mater 8(8):2005–2015

    Article  CAS  Google Scholar 

  74. Fedorková A, Nacher-Alejos A, Gómez-Romero P, Oriňáková R, Kaniansky D (2010) Structural and electrochemical studies of PPy/PEG-LiFePO4 cathode material for Li-ion batteries. Electrochim Acta 55(3):943–947

    Article  CAS  Google Scholar 

  75. Dumitrescu I, Unwin PR, Macpherson JV (2009) Electrochemistry at carbon nanotubes: perspective and issues. Chem Commun (45):6886–6901

  76. Baibarac M, Gomez-Romero P (2006) Nanocomposites based on conducting polymers and carbon nanotubes: from fancy materials to functional applications. J Nanosci Nanotechnol 6(2):289–302

    CAS  Google Scholar 

  77. Baibarac M, Lira-Cantu M, Oro-Sole J, Casañ-Pastor N, Gomez-Romero P (2006) Electrochemically functionalized carbon nanotubes and their application to rechargeable lithium batteries. Small 2(8–9):1075–1082

    Article  CAS  Google Scholar 

  78. Baibarac M, Gomez-Romero P, Lira-Cantu M, Casañ-Pastor N, Mestres N, Lefrant S (2006) Electrosynthesis of the poly(N-vinyl carbazole)/carbon nanotubes composite for applications in the supercapacitors field. Eur Polym J 42:2302–2312

    Article  CAS  Google Scholar 

  79. Chen Z, Qin YC, Weng D, Xiao QF, Peng YT, Wang XL, Li HX, Wei F, Lu YF (2009) Design and synthesis of hierarchical nanowire composites for electrochemical energy storage. Adv Funct Mater 19(21):3420–3426

    Article  CAS  Google Scholar 

  80. Cuentas-Gallegos A, Martinez-Rosales R, Baibarac M, Gomez-Romero P, Rincon ME (2007) Electrochemical supercapacitors based on novel hybrid materials made of carbon nanotubes and polyoxometalates. Electrochem Commun 9(8):2088–2092

    Article  CAS  Google Scholar 

  81. Kulesza PJ, Chojak M, Karnicka K, Miecznikowski K, Palys B, Lewera A, Wieckowski A (2004) Network films composed of conducting polymer-linked and polyoxometalate-stabilized platinum nanoparticles. Chem Mater 16(21):4128–4134

    Article  CAS  Google Scholar 

  82. Kulesza PJ, Karnicka K, Miecznikowski K, Chojak M, Kolary A, Barczuk PJ, Tsirlina G, Czerwinski W (2005) Network electrocatalytic films of conducting polymer-linked polyoxometallate-stabilized platinum nanoparticles. Electrochim Acta 50(25–26):5155–5162

    Article  CAS  Google Scholar 

  83. Cuentas-Gallegos AK, Gomez-Romero P (2006) Triple hybrid materials: a novel concept within the field of organic–inorganic hybrids. J Power Sources 161(1):580–586

    Article  CAS  Google Scholar 

  84. Sapurina I, Stejskal J (2009) Ternary composites of multi-wall carbon nanotubes, polyaniline, and noble-metal nanoparticles for potential applications in electrocatalysis. Chem Pap 63(5):579–585

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding for some of the work presented here was possible by a grant from the Spanish Ministry of Science and Innovation (MICINN, CTQ2008-06779-C02-01). OA gratefully acknowledges a loan from Al-Quds University. DMR thanks CSIC and the European Social Fund for financing through the I3P Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Gómez-Romero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez-Romero, P., Ayyad, O., Suárez-Guevara, J. et al. Hybrid organic–inorganic materials: from child’s play to energy applications. J Solid State Electrochem 14, 1939–1945 (2010). https://doi.org/10.1007/s10008-010-1076-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1076-y

Keywords

Navigation