Skip to main content

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

This chapter outlines the current state of mixed ionic-electronic conducting composite materials, and discusses the latest advances from a didactic point of view. Beginning with the fundamentals, the electronic conducting agent and its nature is described. This section progresses from previously studied inorganic composites to the latest updates in flexible and highly conducting organic systems, where radical and π-conjugated polymers are used. Then, the concept of dopants, which boosts the conductivity of these materials, will be expounded, in addition to the material characteristics depending on their nature (organic based and hybrid architectures). Finally, the electronic and ionic transport are explained. The main characterization techniques are discussed in the following section, highlighting electrochemical impedance spectroscopy. In the last section, the role and scope of these materials in different applications (thermocells, batteries, sensors/transistors and other devices) are explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4PP:

Four-point probe

AC:

Alternating current

AFM:

Atomic force microscopy

BSCF:

Ba0.5Sr0.5Co0.8Fe0.2O3-δ

CCTS:

Carboxymethyl chitosan

CMC:

Carboxymethyl cellulose

CNT:

Carbon nanotubes

CP:

Conducting polymer

DBSA:

Dodecyl benzene sulfonic acid

DC:

Direct current

DCA:

Dicyanamide

DFT:

Density functional theory

DSC:

Differential scanning calorimetry

EIS:

Electrochemical impedance spectroscopy

EMIM:

1-Ethyl-3-methylimidazolium

FET:

Field effect transistor

FSI:

Bis(fluorosulfonyl)imide

FTIR:

Fourier transform

GOPS:

3-Glycidoxypropyltrimethoxysilane

IL:

Ionic liquid

LFP:

Lithium iron phosphate

LSCF:

La0.2Sr0.8Co0.8Fe0.2O3−δ

LTM:

Long-term memory

NCA:

Lithium nickel cobalt aluminium oxide

NFC:

Nanofibrillated cellulose

NMC:

Lithium nickel manganese cobalt oxide

NMP:

N-Methyl-2-pyrrolidone

NMR:

Nuclear magnetic resonance

OECT:

Organic electrochemical transistor

OFET:

Organic field effect transistor

OIPC:

Organic ionic plastic crystal

P3HT:

Poly(3-hexylthiophene-2,5-diyl)

PA:

Polyacetylene

PANI:

Polyaniline

PEDOT:

Poly(3,4-ethylenedioxythiophene)

PGSt:

Poly(4-(2,6-di-tert-butyl-α-(3,5-di-tert-butyl-4-oxo-2,5-cyclohexadien-1-ylidene)-p-tolyloxy)styrene)

PolyDADMA:

Poly(diallyldimethylammonium)

PProDOT:

Poly(3,4-propylenedioxythiophene)

PPy:

Polypyrrole

PROXYL:

1-Pyrrolidnyloxy,2,2,5,5-tetramethyl

PSS:

Polystyrenesulfonate

PTEO:

Poly(4-glycidyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl)

Pth:

Polythiophene

PTHS:

Poly(6-(thiophene-3-yl)hexane-1-sulfonate)

PTMA:

Poly (2,2,6,6-tetramethyl-1-piperidinyloxy-4-yl methacrylate

PTSA:

P-toluene sulphonic acid

PVDF:

Polyvinylidene fluoride

RH:

Relative humidity

SA:

Sodium alginate

SAXS:

Small angle X-ray scattering

SPP:

Symmetric polarization procedure

STM:

Short-term memory

TCB:

Tetracyanoborate

TE:

Thermoelectronics

TEMPO:

(2,2,6,6-Tetramethylpiperidin-1-yl)oxidanyl

TFSI:

Bis(trifluoromethanesulfonyl)imide

WAXS:

Wide angle X-ray scattering

XPS:

X-ray photoelectron spectroscopy

XRD:

X-ray diffraction

References

  1. Reuterand, B., Hardel, K., Bunsenges, B.: Silver sulfide bromide Ag3Br and silver sulfide iodide Ag3SI III: semiconductor properties of Ag3SBr and α-and β-Ag3SI. J. Phys. Chem. 70, 82 (1966)

    Google Scholar 

  2. Macpherson, A.S., Siudak, R., Weiss, D.E., Willis, D.: Electronic conduction in polymers. Aust. J. Chem. 18, 493–505 (1965)

    Article  CAS  Google Scholar 

  3. Shirakawa, H., Louis, E.J., MacDiarmid, A.G., et al.: Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. JCS Chem. Commun. 16, 578–580 (1977)

    Google Scholar 

  4. Chena, C.S., Kruidhof, H., Verweij, H., Burggraaf, A.J.: Oxygen permeation through oxygen ion oxide-noble metal dual phase composites. Solid State Electron. 88, 569–572 (1996)

    Google Scholar 

  5. Mazanec, T.J., Cable, T.L., Frye, J.G.: Electrocatalytic cells for chemical reaction. Solid State Ionics 56, 111–118 (1992)

    Article  Google Scholar 

  6. Sunarso, J., Baumann, S., Serra, J.M., et al.: Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation. J. Memb. Sci. 320, 13–41 (2008)

    Article  CAS  Google Scholar 

  7. Zhang, C., Sunarso, J., Liu, S.: Designing CO2-resistant oxygen-selective mixed ionic-electronic conducting membranes: guidelines, recent advances, and forward directions. Chem. Soc. Rev. 46, 2941–3005 (2017)

    Article  CAS  Google Scholar 

  8. Kingery, W.D., Pappis, J., Doty, M.E., Hill, D.C.: Oxygen ion mobility in cubic Zr0.85Ca0.15O1.85. J. Am. Chem. Soc. 42(8), 393–398 (1959)

    Google Scholar 

  9. Bhalla, A.S., Guo, R., Roy, R.: The perovskite structure – a review of its role in ceramic science and technology. Matter. Res. Innov. 4, 3–26 (2000)

    Article  CAS  Google Scholar 

  10. Kim, D.: Lattice parameters, ionic conductivities and solubility limits in fluorite-structure M02 Oxide (M = Hf4+, Zr4+, Ce4+, Th4+, U4+) solid solutions. J. Am. Ceram Soc. 72(8), 1415–1421 (1989)

    Article  CAS  Google Scholar 

  11. Garcia-fayos, J., Balaguer, M., Baumann, S., Serra, J.M.: Dual-phase membrane based on LaCo0.2Ni0.4Fe0.4O3-X-Ce0.8Gd0.2O2-X composition for oxygen permeation under CO2/SO2-rich gas environments. J. Memb. Sci. 548, 117–124 (2017)

    Google Scholar 

  12. Liu, Y., Tan, X., Li, K., et al.: Membrane processing mixed conducting ceramics for catalytic membrane processing. Catal. Rev. 48, 145–198 (2006)

    Article  CAS  Google Scholar 

  13. Yang, W., Wang, H., Zhu, X., Lin, L.: Development and application of oxygen permeable membrane in selective oxidation of light alkanes. Top Catal. 35, 155–167 (2005)

    Article  CAS  Google Scholar 

  14. Burnwal, S.K.: Review on MIEC cathode materials for solid oxide fuel cells. J. Mol. Eng. Mater. 4(2), 1630001 (2016)

    Article  CAS  Google Scholar 

  15. Kharton, V.V., Marques, F.M.B.: Mixed ionic – electronic conductors: effects of ceramic microstructure on transport properties. Curr. Opin. Solid State Mater. Sci. 6, 261–269 (2002)

    Article  CAS  Google Scholar 

  16. Maguire, E., Gharbage, B., Marques, F.M.B., Labrincha, J.A.: Cathode materials for intermediate temperature SOFCs. Solid State Ionics 127, 329–335 (2000)

    Article  CAS  Google Scholar 

  17. Yu, I., Jeon, D., Boudouris, B., Joo, Y.: Mixed Ionic and electronic conduction in radical polymers. Macromolecules 53(11), 4435–4441 (2020)

    Article  CAS  Google Scholar 

  18. Suga, T., Pu, Y.J., Kasatori, S., Nishide, H.: Cathode- and anode-active poly(nitroxylstyrene)s for rechargeable batteries: p- and n-type redox switching via substituent effects. Macromolecules 40, 3167 (2007)

    Article  CAS  Google Scholar 

  19. Nishide, H., Suga, T.: Organic radical battery. Electrochem. Soc. Interface 14, 32–38 (2005)

    Article  CAS  Google Scholar 

  20. Tomlinson, E.P., Hay, M.E., Boudouris, B.W.: Radical polymers and their application to organic electronic devices. Macromolecules 47(2), 6145–6158 (2014)

    Article  CAS  Google Scholar 

  21. Suga, T., Sugita, S., Ohshiro, H., et al.: p- and n-type bipolar redox-active radical polymer: toward totally organic polymer-based rechargeable devices with variable configuration. Adv Mater 23, 751–754 (2011)

    Article  CAS  Google Scholar 

  22. Rostro, L., Wong, S.H., Boudouris, B.W.: Solid state electrical conductivity of radical polymers as a function of pendant group oxidation state. Macromolecules 47, 3713 (2014)

    Article  CAS  Google Scholar 

  23. Joo, Y., Agarkar, V., Sung, S.H.: A nonconjugated radical polymer glass with high electrical conductivity. Science (80- ) 359, 1391–1395 (2018)

    Google Scholar 

  24. Nakahara, K., Iwasa, S., Satoh, M., et al.: Rechargeable batteries with organic radical cathodes. Chem. Phys. Lett. 359, 351 (2002)

    Article  CAS  Google Scholar 

  25. Song, Z., Zhoue, H.: Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. Energy Environ. Sci. 6, 2280 (2013)

    Article  CAS  Google Scholar 

  26. Wang, S., Li, F., Easley, A.D., Lutkenhaus, J.L.: Real-time insight into the doping mechanism of redox-active organic radical polymers. Nat. Mater. 18, 69–76 (2019)

    Article  CAS  Google Scholar 

  27. Tokue, H., Murata, T., Agatsuma, H., et al.: Charge − discharge with rocking-chair-type li+ migration characteristics in a zwitterionic radical copolymer composed of TEMPO and tri fl uoromethanesulfonylimide with carbonate electrolytes for a high-rate li-ion battery. Macromolecules 50, 1950–1958 (2017)

    Article  CAS  Google Scholar 

  28. Casado, N., Hernandez, G., Veloso, A., et al.: PEDOT radical polymer with synergetic redox and electrical properties. ACS Macro Lett. 5, 59–64 (2016)

    Article  CAS  Google Scholar 

  29. Suwa, K., Oyaizu, K., Segawa, H., Nishide, H.: Anti-oxidizing radical polymer-incorporated perovskite layers and their photovoltaic characteristics in solar cells. Chemsuschem 12, 5207–5212 (2019)

    Article  CAS  Google Scholar 

  30. Zheng, L., Mukherjee, S., Wang, K., et al.: Radical polymers as interfacial layers in inverted hybrid perovskite solar cells †. J. Mater. Chem. Mater. Energy Sustain. 5, 23831–23839 (2017)

    Article  CAS  Google Scholar 

  31. Dey, A., Singh, A., Das, D., Iyer, P.K.: Organic semiconductors: a new future of nanodevices and applications. In: Film, T. (ed.) Babu Krishna Moorthy S, pp. 97–128. Structures in Energy Applications. Springer International Publishing, Cham (2015)

    Google Scholar 

  32. Moon, J., Thapliyal, N., Khadim, K., Goyal, R.N.: Conducting polymer-based electrochemical biosensors for neurotransmitters: a review. Biosens. Bioelectron. 102, 540–552 (2018)

    Article  CAS  Google Scholar 

  33. Zozoulenko, I., Singh, A., Singh, S.K., et al.: Polarons, bipolarons, and absorption spectroscopy of PEDOT. ACS Appl. Polym. Mater. 1, 83–94 (2018)

    Article  CAS  Google Scholar 

  34. Tsuchida, E., Shih, C., Shinohara, I.: Synthesis of a polymer chain having conjugated unsaturated bonds by dehydrohalogenation of polyhalogen-containing polymers. J. Polym. Sci. 2, 3347–3354 (1964)

    CAS  Google Scholar 

  35. Berets, D.J., Smith, D.S.: Electrical properties of linear polyacetylene. Trans. Faraday Soc. 64, 823–828 (1967)

    Article  Google Scholar 

  36. Valadi, K., Gharibi, S., Taheri-Ledari, R., et al.: Metal oxide electron transport materials for perovskite solar cells: a review. Environ. Chem. Lett. 19, 2185–2207 (2021)

    Article  CAS  Google Scholar 

  37. Taheri-Ledari, R., Rahimi, J., Maleki, A., Shalan, A.E.: Ultrasound-assisted diversion of nitrobenzene derivatives to their aniline equivalents through a heterogeneous magnetic Ag/Fe3O4-IT nanocomposite catalyst. New J. Chem. 44, 19827–19835 (2020)

    Article  CAS  Google Scholar 

  38. Taheri-Ledari, R., Esmaeili, M.S., Varzi, Z., et al.: Facile route to synthesize Fe3O4@acacia–SO3H nanocomposite as a heterogeneous magnetic system for catalytic applications. RSC Adv 10, 40055–40067 (2020)

    Article  CAS  Google Scholar 

  39. Shalan, A.E., Sharmoukh, W., Elshazly, A.N., et al.: Dopant-free hole-transporting polymers for efficient, stable, and hysteresis-less perovskite solar cells. Sustain. Mater. Technol. 26, e00226 (2020)

    Google Scholar 

  40. Shalan, A.E., Mohammed, M.K.A., Govindan, N.: Graphene assisted crystallization and charge extraction for efficient and stable perovskite solar cells free of a hole-transport layer. RSC Adv. 11, 4417–4424 (2021)

    Article  CAS  Google Scholar 

  41. Shalan, A.E., El-Shazly, A.N., Rashad, M.M., Allam, N.K.: Tin–zinc-oxide nanocomposites (SZO) as promising electron transport layers for efficient and stable perovskite solar cells. Nanoscale Adv. 1, 2654–2662 (2019)

    Article  CAS  Google Scholar 

  42. Shalan, A.E., Akman, E., Sadegh, F., Akin, S.: Efficient and stable perovskite solar cells enabled by dicarboxylic acid-supported perovskite crystallization. J. Phys. Chem. Lett. 12, 997–1004 (2021)

    Article  CAS  Google Scholar 

  43. Sanad, M.M.S., Shalan, A.E., Rashad, M.M., Mahmoud, M.H.H.: Plasmonic enhancement of low cost mesoporous Fe2O3-TiO2 loaded with palladium, platinum or silver for dye sensitized solar cells (DSSCs). Appl. Surf. Sci. 359, 315–322 (2015)

    Article  CAS  Google Scholar 

  44. Sanad, M.F., Shalan, A.E., Abdellatif, S.O., et al.: Thermoelectric energy harvesters: a review of recent developments in materials and devices for different potential applications. Top Curr. Chem. J. 378, 48 (2020)

    Article  CAS  Google Scholar 

  45. Van, R.S., Akatsuka, T., Tordera, D., et al.: Universal transients in polymer and ionic transition metal complex light-emitting electrocemical cells. J. Am. Chem. Soc. 135, 886–891 (2013)

    Article  CAS  Google Scholar 

  46. Erothu, H., Kolomanska, J., Johnston, P., et al.: Synthesis, thermal processing, and thin film morphology of poly(3- hexylthiophene) − poly(styrenesulfonate) block copolymers. Macromolecules 48, 2107–2117 (2015)

    Article  CAS  Google Scholar 

  47. Reddy, B., Dadigala, R., Bandi, R., et al.: Microwave-assisted preparation of a silver nanoparticles/N-doped carbon dots nanocomposite and its application for catalytic reduction of rhodamine B, methyl red and 4-nitrophenol dyes. RSC Adv. 11, 5139–5148 (2021)

    Article  Google Scholar 

  48. Patel, S.N., Javier, A.E., Beers, K.M., et al.: Morphology and thermodynamic properties of a copolymer with an electronically conducting block: poly(3-ethylhexylthiophene)-block-poly(ethylene oxide). Nano Lett. 12, 4901–4906 (2012)

    Article  CAS  Google Scholar 

  49. Inal, S., Rivnay, J., Leleux, P., et al.: A high transconductance accumulation mode electrochemical transistor. Adv. Mater. 26, 7450–7455 (2014)

    Article  CAS  Google Scholar 

  50. Giovannitti, A., Sbircea, D., Inal, S., et al.: Controlling the mode of operation of organic transistors through side-chain engineering. Proc. Natl. Acad. Sci. USA 113(43), 12017–12022 (2016)

    Article  CAS  Google Scholar 

  51. Jang, K.S., Lee, H., Moon, B.: Synthesis and characterization of water soluble polypyrrole doped with functional dopants. Synth. Met. 143, 289–294 (2004)

    Article  CAS  Google Scholar 

  52. Sinha, S., Bhadra, S., Khastgir, D.: Effect of dopant type on the properties of polyaniline. J. Appl. Polym. Sci. 112(5), 3135–3140 (2009)

    Article  CAS  Google Scholar 

  53. Polk, B.J., Potje-kamloth, K., Josowicz, M.: Role of protonic and charge transfer doping in solid-state polyaniline. J. Phys. Chem. B 106, 11457–11462 (2002)

    Article  CAS  Google Scholar 

  54. Yano, H., Kudo, K., Marumo, K., Okuzaki, H.: Fully soluble self-doped an electrical conductivity greater than 1000 S cm-1. Sci. Adv. 5, 1–10 (2019)

    Article  CAS  Google Scholar 

  55. Wang, X., Ko, K., Yin, C., et al.: Enhancement of thermoelectric performance of PEDOT:PSS films by post-treatment with a superacid. RSC Adv. 8, 18334–18340 (2018)

    Article  CAS  Google Scholar 

  56. Shuzhong, H., Masakazu, M., Kazuhiro, K., et al.: Reversible protonic doping in poly(3,4-Ethylenedioxythiophene). Polymers (Basel) 10, 1065 (2018)

    Article  CAS  Google Scholar 

  57. Neusser, D., Malacrida, C., Kern, M., et al.: High conductivities of disordered p3ht films by an electrochemical doping strategy. Chem. Mater. 32, 6003–6013 (2020)

    Article  CAS  Google Scholar 

  58. Ikei, M.J., Amaya, T.Y., Ramoto, S.U., Atsumoto, K.M.: Conductivity enhancement of PEDOT/PSS films by solvent vapor treatment. Int. J. Soc. Mater. Eng. Resour. 20(2), 158–162 (2014)

    Article  Google Scholar 

  59. Pringle, J.M., Howlett, P.C., Macfarlane, D.R., Forsyth, M.: Organic ionic plastic crystals: recent advances. J. Mater. Chem. 20, 2056–2062 (2010)

    Article  CAS  Google Scholar 

  60. Basile, A., Hilder, M., Makhlooghiazad, F., et al.: Ionic liquids and organic ionic plastic crystals: advanced electrolytes for safer high performance sodium energy storage technologies. Adv. Energy Mater. 8, 1703491 (2018)

    Article  CAS  Google Scholar 

  61. Mazaheripour, A., Majumdar, S., Hanemann-rawlings, D., et al.: Tailoring the seebeck coefficient of PEDOT: PSS by controlling ion stoichiometry in ionic liquid additives. Chem. Mater. 30, 4816–4822 (2018)

    Article  CAS  Google Scholar 

  62. Kee, S., Kim, H., Harish, S., et al.: Highly stretchable and air-stable PEDOT:PSS/Ionic liquid composites for efficient organic thermoelectrics. Chem. Mater. 31, 3519–3526 (2019)

    Article  CAS  Google Scholar 

  63. De, I.A., Park, S., Lee, J., et al.: Ionic liquid designed for PEDOT:PSS conductivity enhancement. J. Am. Chem. Soc. 140, 5375–5384 (2018)

    Article  CAS  Google Scholar 

  64. Wang, H., Ail, U., Gabrielsson, R., et al.: Ionic seebeck effect in conducting polymers. Adv. Energy Mater. 5, 1500044 (2015)

    Article  CAS  Google Scholar 

  65. Xiong, J., Liu, C., Xu, J.: Highly electrical and thermoelectric properties of a PEDOT:PSS thin- film via direct dilution – filtration †. RSC Adv. 5, 60708–60712 (2015)

    Article  CAS  Google Scholar 

  66. Li, Q., Deng, M., Zhang, S., et al.: Synergistic enhancement of thermoelectric and modulated PEDOT flexible films †. J. Mater. Chem. C 7, 4374 (2019)

    Article  CAS  Google Scholar 

  67. Kee, S., Kim, N., Kim, B.S., et al.: Controlling molecular ordering in aqueous conducting polymers using ionic liquids. Adv. Mater. 28, 8625–8631 (2016)

    Article  CAS  Google Scholar 

  68. Del Olmo, R., Casado, N., Olmedo-Martinez, J.L., et al.: Mixed ionic-electronic conductors based on PEDOT : PolyDADMA and organic ionic plastic crystals. Polymers (Basel) 12, 1981 (2020)

    Article  CAS  Google Scholar 

  69. Nti, F., Porcarelli, L., Greene, G.W., et al.: The influence of interfacial interactions on the conductivity and phase behaviour of organic ionic plastic crystal/polymer nanoparticle composite electrolytes. J. Mater. Chem. A 8, 5350–5362 (2020)

    Article  CAS  Google Scholar 

  70. Wang, X., Zhu, H., Greene, G.W., et al.: Organic ionic plastic crystal-based composite electrolyte with surface enhanced ion transport and its use in all- solid-state lithium batteries. Adv. Mater. Technol. 2, 1700046 (2017)

    Article  CAS  Google Scholar 

  71. Malti, A., Edberg, J., Granberg, H., et al.: An organic mixed ion – electron conductor for power electronics. Adv. Sci. 3, 1500305 (2016)

    Article  CAS  Google Scholar 

  72. Belaineh, D., Andreasen, J.W., Palisaitis, J., et al.: Controlling the organization of PEDOT:PSS on cellulose structures. ACS Appl. Polym. Mater. 1, 2342–2351 (2019)

    Article  CAS  Google Scholar 

  73. Wang, Y., Zhu, C., Pfattner, R., et al.: A highly stretchable, transparent and conductive polymer. Sci. Adv. 3, e1602076 (2017)

    Google Scholar 

  74. Chen, L., Liu, W., Su, X., et al.: Chemical synthesis and enhanced electrical properties of bulk poly (3,4- ethylenedioxythiophene)/reduced graphene oxide nanocomposites. Synth. Met. 229(March), 65–71 (2017)

    Article  CAS  Google Scholar 

  75. Zhang, K., Zhang, Y., Wang, S.: Enhancing thermoelectric properties of organic composites through hierarchical nanostructures. Sci. Rep. 3, 3448 (2013)

    Article  Google Scholar 

  76. Olmedo-Martinez, J.L., Meabe, L., Basterretxea, A., et al.: Effect of chemical structure and salt concentration on the crystallization and ionic conductivity of aliphatic polyethers. Polymers (Basel) 11, 452 (2019)

    Article  CAS  Google Scholar 

  77. Zheng, Y., Zeng, H., Zhu, Q., Xu, J.: Recent advances in conducting poly (3,4-ethylenedioxythiophene): polystyrene sulfonate hybrids for thermoelectric applications. J. Mater. Chem. C 6, 8858–8873 (2018)

    Article  CAS  Google Scholar 

  78. Ock, G., Wook, J., Kim, J., et al.: Enhanced thermoelectric properties of germanium powder/poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) composites. Thin Solid Films 566, 14–18 (2014)

    Article  CAS  Google Scholar 

  79. Franco-Gonzalez, J.F., Zozoulenko, I.V.: Molecular dynamics study of morphology of doped PEDOT: from solution to dry phase. J. Phys. Chem. B 121, 4299–4307 (2017)

    Article  CAS  Google Scholar 

  80. Tessler, N., Preezant, Y., Rappaport, N., Roichman, Y.: Charge transport in disordered organic materials and its relevance to thin-film devices: a tutorial review. Adv. Mater. 21, 2741–2761 (2009)

    Article  CAS  Google Scholar 

  81. Cho, B., Park, K.S., Baek, J., et al.: Single-crystal Poly(3,4-ethylenedioxythiophene) nanowires with ultrahigh conductivity. Nano Lett. 14, 3321–3327 (2014)

    Article  CAS  Google Scholar 

  82. Kim, J.Y., Jung, J.H., Lee, D.E., Joo, J.: Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents. Synth. Met. 126, 311–316 (2002)

    Article  CAS  Google Scholar 

  83. Kaisera, A.B., Subramaniama, C.K.: Electronic transport properties of conducting polymers and polymer blends *. Synth. Met. 69, 197–200 (1995)

    Article  Google Scholar 

  84. Yunis, R., Girard, G.M.A., Wang, X., et al.: The anion effect in ternary electrolyte systems using poly (diallyldimethylammonium) and phosphonium-based ionic liquid with high lithium salt concentration. Solid State Ionics 327, 83–92 (2018)

    Article  CAS  Google Scholar 

  85. Olmedo-Martinez, J.L., Porcarelli, L., Alegr, A., et al.: High Lithium Conductivity of Miscible Poly (ethylene oxide)/Methacrylic Sulfonamide Anionic Polyelectrolyte Polymer Blends. Macromolecules 53, 4442–4453 (2020)

    Article  CAS  Google Scholar 

  86. Armand, M.: Polymer solid electrolytes - an overview. Solid State Ionics 9, 745–754 (1983)

    Article  Google Scholar 

  87. Van, R.S., Kemerink, M.: Correcting for contact geometry in Seebeck coefficient. Org. Electron. 15(10), 2250–2255 (2014)

    Article  CAS  Google Scholar 

  88. Wiemhöfer, H.-D.: Coupling Between Electron and Ion Transport in Mixed Conductors. Solid State Ionics 41, 530–534 (1990)

    Article  Google Scholar 

  89. Barea, E.M., Palomares, E.: A review of recent results on electrochemical determination of the density of electronic states of nanostructured metal-oxide semiconductors and organic hole conductors. Inorganica Chim. Acta 361, 684–698 (2008)

    Article  CAS  Google Scholar 

  90. Savva, A., Wustoni, S., Inal, S.: Ionic-to-electronic coupling efficiency in PEDOT:PSS films operated in aqueous electrolytes. J. Mater Chem. C 6, 12023–12030 (2018)

    Article  CAS  Google Scholar 

  91. Garcia-Belmonte, G., Bisquert, J., Popkirov, G.S.: Determination of the electronic conductivity of polybithiophene films at different doping levels using in situ electrochemical impedance measurements. Appl. Phys. Lett. 83(11), 2178–2180 (2003)

    Article  CAS  Google Scholar 

  92. Pozyczka, K., Marzantowicz, M., Dygas, J.R., Krok, F.: IONIC CONDUCTIVITY AND LITHIUM TRANSFERENCE NUMBER OF POLY ( ETHYLENE OXIDE ): LiTFSI SYSTEM. Electrochim. Acta 227, 127–135 (2017)

    Article  CAS  Google Scholar 

  93. Waremra, R.S., Betaubun, P.: Analysis of electrical properties using the four point probe method. E3S Web Conf. 73, 13019 (2018)

    Google Scholar 

  94. Catalano, S.B.: Correction factor curves for square-array and rectangular-array four-point probes near conducting or nonconducting boundaries *. IEEE Trans. Electron. Devices 10(3), 185–188 (1963)

    Article  Google Scholar 

  95. Wang, S., Yan, M., Li, Y., et al.: Separating electronic and ionic conductivity in mix-conducting layered lithium transition-metal oxides. J. Power Sources 393(March), 75–82 (2018)

    Article  CAS  Google Scholar 

  96. Brooke, R., Evans, D., Dienel, M., et al.: Inkjet printing and vapor phase polymerization: patterned conductive PEDOT for electronic applications †. J. Mater. Chem. C 1, 3353–3358 (2013)

    Article  CAS  Google Scholar 

  97. Hütter, P.C., Rothländer, T., Scheipl, G., Stadlober, B.: All screen-printed logic gates based on organic electrochemical transistors. IEE Trans. Electron. Devices 62(12), 4231–4236 (2015)

    Article  Google Scholar 

  98. Andersson, B.P., Forchheimer, R., Tehrani, P., Berggren, M.: Printable all-organic electrochromic active-matrix displays **. Adv. Funct. Mater. 17, 3074–3082 (2007)

    Article  CAS  Google Scholar 

  99. Bharti, M., Singh, A., Samanta, S., Aswal, D.K.: Progress in Materials Science Conductive polymers for thermoelectric power generation. Prog. Mater. Sci. 93, 270–310 (2018)

    Article  CAS  Google Scholar 

  100. Luo, X., Schroeder, B.C., Di, C., Mei, J.: Flexible and printed organic thermoelectrics: opportunities and challenges. Mater Matters 12(3) (2017)

    Google Scholar 

  101. Fan, Z., Du, D., Yu, Z., et al.: Significant enhancement in the thermoelectric properties of PEDOT: PSS films through a treatment with organic solutions of inorganic salts. ACS Appl. Mater. Inferfaces 8, 23204–23211 (2016)

    Article  CAS  Google Scholar 

  102. Hsu, J., Choi, W., Yang, G., Yu, C.: Origin of unusual thermoelectric transport behaviors in carbon nanotube filled polymer composites after solvent/acid treatments. Org. Electron. 45, 182–189 (2017)

    Article  CAS  Google Scholar 

  103. Zhang, T., Li, K., Li, C., et al.: Mechanically durable and flexible thermoelectric Films from PEDOT: PSS/PVA/Bi0.5Sb1.5Te3 nanocomposites. Adv. Electron. Mater. 3, 1600554 (2017)

    Google Scholar 

  104. Liang, Z., Boland, M.J., Butrouna, K., et al.: Increased power factors of organic-inorganic nanocomposite thermoelectric materials and the role of energy filtering. J. Mater. Chem. A 5, 15891–15900 (2017)

    Article  CAS  Google Scholar 

  105. See, K.C., Feser, J.P., Chen, C.E., et al.: Water-processable polymer-nanocrystal hybrids for thermoelectrics. Nano Lett. 10, 4664–4667 (2010)

    Article  CAS  Google Scholar 

  106. Yao, H., Fan, Z., Cheng, H., et al.: Recent development of thermoelectric polymers and composites. Macromol. Rapid Commun. 39, 1700727 (2018)

    Article  CAS  Google Scholar 

  107. Kazim, A.H., Cola, B.A., Soc, J.E., et al.: Electrochemical characterization of carbon nanotube and poly(3,4-ethylenedioxythiophene)−poly (styrenesulfonate) composite aqueous electrolyte for thermo-electrochemical cells. J. Electrochem. Soc. 163(8), F867–F871 (2016)

    Article  CAS  Google Scholar 

  108. Yoshino, A.: The birth of the lithium-ion battery. Angew Chem. Int. Ed. 51, 5798 (2012)

    Article  CAS  Google Scholar 

  109. Su, X., Wu, Q., Li, J., et al.: Silicon-based nanomaterials for lithium-ion batteries: a review. Adv. Energy Mater. 4, 1300882 (2014)

    Article  CAS  Google Scholar 

  110. Besenhard, È.O., Winter, M., Wachtler, M.: Tin and tin-based intermetallics as new anode materials for lithium-ion cells. J. Power Sources 94, 189–193 (2001)

    Article  Google Scholar 

  111. Zhao, Y., Yang, L., Liu, D., et al.: A conductive binder for high-performance sn electrodes in lithium- ion batteries. ACS Appl. Mater Interfaces 10, 1672–1677 (2018)

    Article  CAS  Google Scholar 

  112. Chen, Z., Belharouak, I., Sun, Y., Amine, K.: Titanium-based anode materials for safe lithium-ion batteries. Adv. Funct. Mater. 23, 959–969 (2013)

    Article  CAS  Google Scholar 

  113. Wu, M., Xiao, X., Vukmirovic, N., et al.: Toward an ideal polymer binder design for high-capacity battery anodes. J. Am. Chem. Soc. 135, 12048–12056 (2013)

    Article  CAS  Google Scholar 

  114. Liu, C., Neale, Z.G., Cao, G.: Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater Today 19(2), 109–123 (2016)

    Article  CAS  Google Scholar 

  115. Nayak, P.K., Grinblat, J., Levi, M., et al.: Multiphase LiNi0.33Mn0.54Co0.13O2 cathode material with high capacity retention for li-ion batteries. Chem. Electron. Chem. 2(12), 1957–1965 (2015)

    Google Scholar 

  116. Purwanto, A., Yudha, C.S., Ubaidillah, U., et al.: NCA cathode material: Synthesis methods and performance enhancement efforts. Mater. Res. Express 5, 122001 (2018)

    Google Scholar 

  117. Nguyen, V.A., Kuss, C.: Review — conducting polymer-based binders for lithium-ion batteries and beyond. J. Electrochem. Soc. 167, 065501 (2020)

    Google Scholar 

  118. Bresser, D., Buchholz, D., Moretti, A., et al.: Alternative binders for sustainable electrochemical energy storage-the transition to aqueous electrode processing and bio-derived polymers. Energy Environ. Sci. 11(11), 3096–3127 (2018)

    Article  CAS  Google Scholar 

  119. Zhao, J., Yang, X., Yao, Y., et al.: Moving to aqueous binder: a valid approach to achieving high-rate capability and long-term durability for sodium-ion battery. Adv. Sci. 5, 1700768 (2018)

    Article  CAS  Google Scholar 

  120. Chen, H., Ling, M., Hencz, L., et al.: Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices. Chem. Rev. 118(18), 8936–8982 (2018)

    Article  CAS  Google Scholar 

  121. Ling, L., Bai, Y., Wang, Z., et al.: Remarkable effect of sodium alginate aqueous binder on anatase TiO2 as high-performance anode in sodium ion batteries. ACS Appl. Mater. Interfaces 10, 5560–5568 (2018)

    Article  CAS  Google Scholar 

  122. Yue, L., Zhang, L., Zhong, H.: Carboxymethyl chitosan: a new water soluble binder for Si anode of Li-ion batteries. J. Power Sources 247, 327–331 (2014)

    Article  CAS  Google Scholar 

  123. Wang, A., Zhou, W., Huang, A., et al.: Modifying the Zn anode with carbon black coating and nanofibrillated cellulose binder: a strategy to realize dendrite-free Zn-MnO2 batteries. J. Colloid Interface Sci. 577, 256–264 (2020)

    Article  CAS  Google Scholar 

  124. Das, P.R., Soc, J.E.: PEDOT:PSS as a functional binder for cathodes in lithium ion batteries. J. Electrochem. Soc. 162(4), A674–A678 (2015)

    Article  CAS  Google Scholar 

  125. Pan, J., Xu, G., Chang, Z., et al.: PAA/PEDOT:PSS as a multifunctional, water-soluble binder to improve the capacity and stability of lithium-sulfur batteries. RSC Adv. 6, 40650–40655 (2016)

    Article  CAS  Google Scholar 

  126. Kim, T., Ono, L.K., Qi, Y.: Elucidating the mechanism involved in the performance improvement of lithium-ion transition metal oxide battery by conducting polymer. Adv. Mater. Interfaces 6, 1801785 (2019)

    Article  CAS  Google Scholar 

  127. Sasso, C., Zeno, E., Petit-conil, M., et al.: Highly conducting polypyrrole/cellulose nanocomposite films with enhanced mechanical properties. Macromol. J. 295, 934–941 (2010)

    CAS  Google Scholar 

  128. Xu, Y., Zhang, Y.: Synthesis of polypyrrole/sodium carboxymethyl cellulose nanospheres with enhanced supercapacitor performance. Mater. Lett. 139, 145–148 (2015)

    Article  CAS  Google Scholar 

  129. Su, N.: Improving electrical conductivity, thermal stability, and solubility of polyaniline-polypyrrole nanocomposite by doping with anionic spherical polyelectrolyte brushes. Nanoscale Res. Lett. 10, 301 (2015)

    Article  CAS  Google Scholar 

  130. Vogl, U.S., Das, P.K., Weber, A.Z., et al.: Mechanism of Interactions between CMC binder and si single crystal facets. Langmuir 30, 10299–10307 (2014)

    Article  CAS  Google Scholar 

  131. Luo, Y., Guo, R., Li, T., et al.: Application of polyaniline for li-ion batteries, lithium-sulfur batteries, and supercapacitors. Chemsuschem 12, 1591–1611 (2019)

    Article  CAS  Google Scholar 

  132. Kang, W., Deng, N., Ju, J., et al.: A review of recent developments in rechargeable lithium–sulfur batteries. Nanoscale 8, 16541–16588 (2016)

    Article  CAS  Google Scholar 

  133. Ling, M., Qiu, J., Li, S., et al.: Multifunctional SA-PProDOT binder for lithium ion batteries. Nano Lett. 15, 4440–4447 (2015)

    Article  CAS  Google Scholar 

  134. Shi, Y., Zhou, X., Zhang, J., et al.: Nanostructured conductive polymer gels as a general framework material to improve electrochemical performance of cathode materials in li-ion batteries. Nano Lett. 17(3), 1906–1914 (2017)

    Article  CAS  Google Scholar 

  135. Wu, H., Yu, G., Pan, L., et al.: Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 4, 1943 (2013)

    Article  CAS  Google Scholar 

  136. Minudri, D., Mantione, D., Dominguez-alfaro, A., et al.: Water Soluble Cationic Poly (3,4-Ethylenedioxythiophene) PEDOT-N as a Versatile Conducting Polymer for Bioelectronics. Adv Electron Mater. 6, 2000510 (2020)

    Google Scholar 

  137. Mcdonald, M.B., Hammond, P.T.: Efficient transport networks in a dual electron/lithium-conducting polymeric composite for electrochemical applications. ACS Appl. Mater. Interfaces 10, 15681–15690 (2018)

    Article  CAS  Google Scholar 

  138. Zeng, W., Wang, L., Peng, X., et al.: Enhanced Ion conductivity in conducting polymer binder for high-performance silicon anodes in advanced lithium-ion batteries. Adv. Energy Mater. 8, 1702314 (2018)

    Article  CAS  Google Scholar 

  139. Rivnay, J., Inal, S., Salleo, A., et al.: Organic electrochemical transistors. Nat. Rev. Mater. 3, 17086 (2018)

    Article  CAS  Google Scholar 

  140. Kittlesen, G.P., White, H.S., Wrighton, M.S.: Chemical derivatization of microelectrode arrays by oxidation of pyrrole and n-methylpyrrole: fabrication of molecule-based electronic devices. J Am. Chem. Soc. 106, 7389–7396 (1984)

    Article  CAS  Google Scholar 

  141. Braendlein, M., Lonjaret, T., Leleux, P., et al.: Voltage amplifier based on organic electrochemical transistor. Adv. Sci. 4, 1600247 (2017)

    Article  CAS  Google Scholar 

  142. Majak, D., Fan, J., Gupta, M.: Fully 3D printed OECT based logic gate for detection of cation type and concentration. Sensors Actuators B Chem. 286, 111–118 (2019)

    Article  CAS  Google Scholar 

  143. Bernards, D.A., Malliaras, G.G., Toombes, G.E.S., Gruner, S.M.: Gating of an organic transistor through a bilayer lipid membrane with ion channels. Appl. Phys. Lett. 89, 053505 (2006)

    Google Scholar 

  144. Hamedi, M., Forchheimer, R., As, O.I.: Towards woven logic from organic electronic fibres. Nat. Mater. 6, 357–362 (2007)

    Article  CAS  Google Scholar 

  145. Wan, A.M., Inal, S., Williams, T., et al.: 3D conducting polymer platforms for electrical control of protein conformation and cellular functions. J. Mater. Chem. B 3, 5040–5048 (2015)

    Article  CAS  Google Scholar 

  146. Elmahmoudy, M., Inal, S., Charrier, A., et al.: Tailoring the electrochemical and mechanical properties of PEDOT:PSS films for bioelectronics. Macromol. Mater. Eng. 302, 1600497 (2017)

    Article  CAS  Google Scholar 

  147. Bernard, C., Ghestem, A., Ismailova, E., et al.: In vivo recordings of brain activity using organic transistors. Nat. Commun. 4, 1575 (2013)

    Article  CAS  Google Scholar 

  148. Williamson, A., Ferro, M., Leleux, P., et al.: Localized neuron stimulation with organic electrochemical transistors on delaminating depth probes. Adv. Mater. 27, 4405–4410 (2015)

    Article  CAS  Google Scholar 

  149. Sessolo, M., Rivnay, J., Bandiello, E., et al.: Ion-selective organic electrochemical transistors. Adv. Mater. 26, 4803–4807 (2014)

    Article  CAS  Google Scholar 

  150. Andersson, B.P., Nilsson, D., Svensson, P., et al.: Active matrix displays based on all-organic electrochemical smart pixels printed on paper. Adv. Mater. 14(20), 1460–1464 (2002)

    Article  CAS  Google Scholar 

  151. Chen, S., Surendran, A., Wu, X., Leong, W.L.: Contact modulated ionic transfer doping in all-solid-state organic electrochemical transistor for ultra-high sensitive tactile perception at low operating voltage. Adv. Funct. Mater. 30, 2006186 (2020)

    Google Scholar 

  152. Hu, X., Meng, X., Zhang, L., et al.: A mechanically robust conducting polymer network electrode for efficient flexible perovskite solar cells a mechanically robust conducting polymer network electrode for efficient flexible perovskite solar cells. Joule, pp. 1–14 (2019)

    Google Scholar 

  153. Chen, S., Surendran, A., Wu, X., et al.: Recent technological advances in fabrication and application of organic electrochemical transistors. Adv. Mater. Technol. 5, 2000523 (2020)

    Google Scholar 

  154. Gkoupidenis, P., Schaefer, N., Garlan, B., Malliaras, G.G.: Neuromorphic functions in PEDOT:PSS organic electrochemical transistors. Adv. Mater. 27, 7176–7180 (2015)

    Article  CAS  Google Scholar 

  155. Gkoupidenis, P., Schaefer, N., Strakosas, X., et al.: Synaptic plasticity functions in an organic electrochemical transistor. Appl. Phys. Lett. 107, 263302 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria Forsyth or Nerea Casado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Del Olmo, R., Forsyth, M., Casado, N. (2022). Mixed Ionic-Electronic Conductors Based on Polymer Composites. In: Shalan, A.E., Hamdy Makhlouf, A.S., Lanceros‐Méndez, S. (eds) Advances in Nanocomposite Materials for Environmental and Energy Harvesting Applications. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-94319-6_17

Download citation

Publish with us

Policies and ethics