Skip to main content
Log in

Electrodeposition behavior of Mg with Zn from acidic sulfate solutions

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Electrodeposition of Mg with Zn in acidic sulfate solutions with polyethylene glycol and octadecyl dimethyl benzyl ammonium chloride as additives was investigated by scanning electron microscopy, X-ray diffraction, and potentiodynamic polarization techniques. The results show that these two compounds act in a synergetic way to suppress Zn deposition markedly and facilitate Mg reduction. Zn–0.46%Mg coatings are produced under high cathodic current densities, which have lower corrosion potentials than Zn coatings and hydrogen evolution in neutral chloride solutions. Magnesium hydroxide may cause current oscillations at high cathodic polarizations in plating solutions without zinc salts due to its formation and peel-off. An “induced co-deposition” mechanism is proposed for Zn–Mg alloy electrodeposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hosking NC, Strom MA, Shipway PH, Rudd CD (2007) Corros Sci 49:3669

    Article  CAS  Google Scholar 

  2. Volovitch P, Allely C, Ogle K (2009) Corros Sci 51:1251

    Article  CAS  Google Scholar 

  3. Prosek T, Nazarov A, Bexell U, Thierry D, Serak J (2008) Corros Sci 50:2216

    Article  CAS  Google Scholar 

  4. Nishimura K, Shindo H, Nomura H, Katoh K (2003) Tetsu to Hagane 89:174

    CAS  Google Scholar 

  5. Schuhmacher B, Schwerdt C, Seyfert U, Zimmer O (2003) Surf Coat Technol 163–164:703

    Article  Google Scholar 

  6. Lee MH, Kim JD, Oh JS, Yang JH, Naek SM (2008) Surf Coat Technol 202:5590

    Article  CAS  Google Scholar 

  7. Shedden BA, Katardjiev IV, Berg S, Samandi M, Window B (1999) Surf Coat Technol 116–119:751

    Article  Google Scholar 

  8. Morishita M, Koyama K, Murase M, Mori Y (1996) ISIJ Int 36:714

    Article  CAS  Google Scholar 

  9. Morishita M, Koyama K, Mori Y (1997) ISIJ Int 37:55

    Article  CAS  Google Scholar 

  10. Nakano H, Oue S, Kobayashi S, Fukushima H, Araga K, Okumura K, Shige H (2004) Tetsu-to-Hagane 90:51

    Google Scholar 

  11. Cachet C, Wiart R (1994) J Electrochem Soc 141:131

    Article  CAS  Google Scholar 

  12. Yan H, Downes J, Boden PJ, Harris SJ (1996) J Electrochem Soc 143:1577

    Article  CAS  Google Scholar 

  13. Gomes A, da Silva Pereira MI (2006) Electrochim Acta 51:1342

    Article  CAS  Google Scholar 

  14. Li MC, Luo SZ, Qian YH, Zhang WQ, Jiang LL (2007) J Electrochem Soc 154:D567

    Article  CAS  Google Scholar 

  15. Hausbrand R, Stratmann M, Rohwerder M (2009) Corros Sci 51:2107

    Article  CAS  Google Scholar 

  16. Hsieh JC, Hu CC, Lee TC (2008) J Electrochem Soc 155:D675

    Article  CAS  Google Scholar 

  17. Ortiz-Aparicio JL, Meas Y, Trejo G, Ortega R, Chapman TW, Chainet E, Ozil P (2008) J Electrochem Soc 155:D167

    Article  CAS  Google Scholar 

  18. Lee JY, Kim JW, Lee MK, Shin HJ, Kim HT, Park SM (2004) J Electrochem Soc 151:C25

    Article  CAS  Google Scholar 

  19. Kim JW, Lee JY, Park SM (2004) Langmuir 20:459

    Article  CAS  Google Scholar 

  20. Trejo G, Ruiz H, Ortega R, Meas Y (2001) J Appl Electrochem 31:685

    Article  CAS  Google Scholar 

  21. Bahena E, Mendez PF, Meas Y, Ortega R, Salgado L, Trejo G (2004) Electrochim Acta 49:989

    Article  CAS  Google Scholar 

  22. Bonou L, Eyraud M, Denoyel R, Massiani Y (2002) Electrochim Acta 47:4139

    Article  CAS  Google Scholar 

  23. Kelly JJ, West AC (1998) J Electrochem Soc 145:3477

    Article  CAS  Google Scholar 

  24. Cachet C, Wiart R (1999) Electrochim Acta 44:4743

    Article  CAS  Google Scholar 

  25. Franklin TC (1987) Surf Coat Technol 30:415

    Article  CAS  Google Scholar 

  26. Ibrahim MAM, el Rehim SS Abd, Moussa SO (2003) J Appl Electrochem 33:627

    Article  CAS  Google Scholar 

  27. Podlaha EJ, Landolt D (1996) J Electrochem Soc 143:839

    Article  Google Scholar 

  28. Crousier J, Eyraud M, Crousier JP, Roman JM (1992) J Appl Electrochem 22:749

    Article  CAS  Google Scholar 

  29. Tsyntsaru N, Bobanova J, Ye X, Cesiulis H, Dikusar A, Prosycevas I, Celis JP (2009) Sur Coat Technol 203:3136

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support provided by the Natural Science Foundation of China (NSFC, grant no. 50771109) and Shanghai Municipal Education Commission (09YZ21) is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mou Cheng Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M.C., Xin, S.S. & Wu, M.Y. Electrodeposition behavior of Mg with Zn from acidic sulfate solutions. J Solid State Electrochem 14, 2235–2240 (2010). https://doi.org/10.1007/s10008-010-1058-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1058-0

Keywords

Navigation