Skip to main content
Log in

Preparation and electrochemical properties of nanofiber poly(2,5-dihydroxyaniline)/activated carbon composite electrode for supercapacitor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, poly(2,5-dihydroxyaniline) (PDHA) was successfully prepared by electrochemical method on the surface of active carbon (AC) electrodes. The physical and electrochemistry properties of PDHA/AC composite electrode compared with pure AC electrode were investigated by scanning electronic microscope (SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy, cycle life test. From SEM, PDHA presents nanofiber network morphology. The diameter of the nanofiber PDHA is about 200–300 nm. PDHA/AC composite electrode shows redox peaks in CV curve and voltage plateaus in galvanostatic charge–discharge curve, and all these indicate that PDHA/AC composite electrode has more advantages. The maintenance of the capacitance compared to initial cycle capacitance of composite electrode is about 90% during the charge–discharge cycles. In conclusion, The PDHA/AC composite electrode shows much higher specific capacitance (958 F g−1), better power characteristics, longer cycle life. Therefore, PDHA/AC composite electrodes were more promising for application in capacitor. This can be attributed to the introduction of nanofiber PDHA. The effect and role of PDHA in the composite electrodes were also discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PDHA:

Poly(2,5-dihydroxyaniline)

AC:

Active carbon

PDHA/AC:

Poly(2,5-dihydroxyaniline)/activated carbon

SEM:

Scanning electronic microscope

CV:

Cyclic voltammetry

EIS:

Electrochemical impedance spectroscopy

C:

Carbon

PVDF:

Polyvinylidene fluoride

References

  1. Conway BE (1991) J Electrochem Soc 138:1539–1548

    Article  CAS  Google Scholar 

  2. Arbizzani C, Mastragostino M, Soavi F (2001) J Power Sources 100:164–170

    Article  CAS  Google Scholar 

  3. Kotz R, Carlen M (2000) Electrochim Acta 45:2483–2498

    Article  CAS  Google Scholar 

  4. Gamby J, Taberna PL, Simon P, Fauvarque JF, Chesneau M (2001) J Power Sources 101:109–116

    Article  CAS  Google Scholar 

  5. Ruiz V, Blanco C, Santamaría R, Ramos-Fernández JM, Martínez-Escandell M, Sepúlveda-Escribano A, Rodríguez-Reinoso F (2009) Carbon 47:195–200

    Article  CAS  Google Scholar 

  6. Chen QL, Xue KH, Shen W, Tao FF, Yin SY, Xu W (2004) Electrochim Acta 49:4157–4161

    Article  CAS  Google Scholar 

  7. Seo MK, Park SJ (2009) Mater Sci Eng B 164:106–111

    Article  CAS  Google Scholar 

  8. Qu DY (2002) J Power Sources 109:403–411

    Article  CAS  Google Scholar 

  9. Taberna PL, Chevallier G, Simon P, Plée D, Aubert T (2006) Mater Res Bull 41:478–484

    Article  CAS  Google Scholar 

  10. Momma T, Liu XJ, Osaka T, Ushio Y, Sawada Y (1996) J Power Sources 60:249–253

    Article  CAS  Google Scholar 

  11. Snook GA, Wilson GJ, Pandolfo AG (2009) J Power Sources 186:216–223

    Article  CAS  Google Scholar 

  12. Conway BE, Pell WG (2003) J Solid State Electrochem 7:637

    Article  CAS  Google Scholar 

  13. Kalaji M, Murphy PJ, Williams GO (1999) Synth Met 102:1360–1361

    Article  CAS  Google Scholar 

  14. Mastragostino M, Arbizzani C, Soavi F (2001) J Power sources 97–98:812–815

    Article  Google Scholar 

  15. Mastragostino M, Arbizzani C, Soavi F (2002) Solid State Ionics 148:493–498

    Article  CAS  Google Scholar 

  16. Inzelt G (2008) Conducting polymers. Springer, Heidelberg

    Google Scholar 

  17. Subramanian V, Hall SC, Smith PH, Rambabu B (2004) Solid State Ionics 175:511–515

    Article  CAS  Google Scholar 

  18. Prasad KR, Miura N (2004) Electrochem Commun 6:849–852

    Article  CAS  Google Scholar 

  19. Prasad KR, Miura N (2004) Electrochem Commun 6:1004–1008

    Article  Google Scholar 

  20. Lin YR, Teng H (2003) Carbon 41:2865–2871

    Article  CAS  Google Scholar 

  21. Chen WC, Wen TC (2003) J Power Sources 117:273–282

    Article  CAS  Google Scholar 

  22. Zhou HH, Chen H, Luo SL, Lu GW, Wei WZ, Kuang YF (2005) J Solid State Electrochem 9:574–580

    Article  CAS  Google Scholar 

  23. Sivakkumar SR, Kim WJ, Choi JA, MacFarlane DR, Forsyth M, Kim DW (2007) J Power Sources 171:1062–1068

    Article  CAS  Google Scholar 

  24. Mondal SK, Barai K, Munichandraiah N (2007) Electrochim Acta 52:3258–3264

    Article  CAS  Google Scholar 

  25. Wang Q, Li JL, Gao F, Li WS, Wu KZ, Wang XD (2008) New Carbon Materials 3:275–280

    Article  Google Scholar 

  26. Dong B, He BL, Xu CL, Li HL (2007) Mater Sci Eng B 143:7–13

    Article  CAS  Google Scholar 

  27. Bleda-Martínez MJ, Morallón E, Cazorla-Amorós D (2007) Electrochim Acta 52:4962–4968

    Article  Google Scholar 

  28. He BL, Dong B, Wang W, Li HL (2009) Mater Chem Phys 114:371–375

    Article  CAS  Google Scholar 

  29. Hu CC, Li WY, Lin JY (2004) J Power Sources 137:152–157

    CAS  Google Scholar 

  30. Xu GC, Wang W, Qu XF, Yin YS, Chu L, He BL, Wu HK, Fang JR, Bao YS, Liang L (2009) Eur Polym J 45:2701–2707

    Article  CAS  Google Scholar 

  31. Muthulakshmi B, Kalpana D, Pitchumani S, Renganathan NG (2006) J Power Sources 158:1533–1537

    Article  CAS  Google Scholar 

  32. Laforgue A, Simon P, Sarrazin C, Fauvarque JF (1999) J Power Sources 80:142–148

    Article  CAS  Google Scholar 

  33. Hong JI, Yeo IH, Paik WK (2001) J Electrochem Soc 148:156–164

    Article  Google Scholar 

  34. Mi HY, Zhang XG, Yang SD, Ye XG, Luo JM (2008) Mater Chem Phys 112:127–131

    Article  CAS  Google Scholar 

  35. Guo DJ, Li HL (2005) J Solid State Electrochem 9:445–449

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the National Natural Science Foundation of China (Grant No. 50642011) and the Natural Science Foundation of Shandong Province of China (Grant No. 2006GG2207006) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Wang, W., Zou, Wy. et al. Preparation and electrochemical properties of nanofiber poly(2,5-dihydroxyaniline)/activated carbon composite electrode for supercapacitor. J Solid State Electrochem 14, 2219–2224 (2010). https://doi.org/10.1007/s10008-010-1051-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1051-7

Keywords

Navigation