Skip to main content
Log in

Temperature effect on the recovery of SO2-Poisoned GC/Nano-Pt electrode towards oxygen reduction

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The SO2 poisoning of Pt nanoparticle (n-Pt) modified glassy carbon (GC/n-Pt) electrode and the recovery of its activity for the oxygen reduction reaction (ORR) were studied using cyclic voltammetry at ambient (25 °C) and elevated (70 °C) temperatures. Recovery of the GC/n-Pt electrode by cycling the potential within the ORR range (1.0 to 0.2 V (standard hydrogen electrode)) in 0.1 M H2SO4 was not effective at 25 °C, but at 70 °C the onset potential of the ORR was almost the same as that at the fresh GC/n-Pt electrode. For the two different temperatures used here, the recovery on cycling the potential between 0.4 and 1.7 V was efficient. However, the number of cycles and the amount of charge required for the recovery at 70 °C were the smallest, which is of great interest for the proton exchange membrane fuel cell performance. The recovery using such a wide potential range at 70 °C resulted in an enhancement of the electrocatalytic activity of the GC/n-Pt electrode over a non-poisoned (bare) GC/n-Pt electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Moore JM, Adcock PL, Lakeman JB, Mepsted GO (2000) J Power Sources 85:254

    Article  CAS  Google Scholar 

  2. Mohtadi R, Lee WK, Van Zee JW (2004) J Power Sources 138:216

    Article  CAS  Google Scholar 

  3. Petrii OA (2008) J Solid State Electrochem 12:609

    Article  CAS  Google Scholar 

  4. Halseid R, Heinen M, Jusys Z, Behm R (2008) J Power Sources 176:435

    Article  CAS  Google Scholar 

  5. Mohtadi R, Lee WK, Cowan S, Van Zee JW, Murthy M (2003) Electrochem Solid-State Lett 6:A272

    Article  CAS  Google Scholar 

  6. Chin DT, Howard PD (1986) J Electrochem Soc 133:2447

    Article  CAS  Google Scholar 

  7. Zednek S, Weber J (1972) J Electroanal Chem Interfacial Electrochem 38:115

    Article  Google Scholar 

  8. Floral MJ, Langer SH (1988) Electrochim Acta 33:257

    Article  Google Scholar 

  9. Langer SH, Card JC (1987) J Mol Catal 42:331

    Article  CAS  Google Scholar 

  10. Garsany Y, Baturina OA, Swider-Lyons KE (2007) J Electrochem Soc 154:B670

    Article  CAS  Google Scholar 

  11. Zhdanow SI (1982) A.J. Bard (Ed), Encyclopedia of the Electrochemistry of The Elements, Vol. 6, Marcel Dekker, New York,

  12. Gould BD, Baturina OA, Swider-Lyons KE (2009) J Power Sources 188:89

    Article  CAS  Google Scholar 

  13. Garzon FH, Rockward T, Urdamilleta IG, Brosha EL, Uribe FA (2006) ECS Trans 3(1):695

    Article  CAS  Google Scholar 

  14. Nagahara Y, Sugawara S, Shinohara K (2008) J Power Sources 182:422

    Article  CAS  Google Scholar 

  15. Cheng X, Shi Z, Glass N, Zhang L, Zhang J, Song D, Liu Z-S, Wang J, Shen J (2007) J Power Sources 165:739

    Article  CAS  Google Scholar 

  16. Imamura D, Hashimasa Y (2007) ECS Trans 11(1):853

    Article  CAS  Google Scholar 

  17. Trasatti S, Petrii OA (1991) Pure & Appl Chem 93:711

    Article  Google Scholar 

  18. Mel’nichenko NA, Koltunov AM, Vyskrebentsev AS, Bazhanov AV (2008) Russ J Phys Chem A 82:746

    Google Scholar 

  19. Kirk-Othmer, “Encyclopedia of Chemical Technology”, Wiley, 2001.

  20. Danilewicz JC (2007) Am J Enol Vitic 58:53

    CAS  Google Scholar 

  21. Quijada C, Rodes A, Vazquez JL, Perez JM, Aldaz A (1995) J Electroanal Chem 394:217

    Article  Google Scholar 

  22. Quijada C, Rodes A, Huerta F, Vazquez JL (1998) Electrochim Acta 44:1091

    Article  CAS  Google Scholar 

  23. Wakabayashi N, Takeichi Mi, Itagaki M, Uchida H, Watanabe M (2005) J Electroanal Chem 574:339

    Article  CAS  Google Scholar 

  24. Markovic NM, Schmidt TJ, Stamenkovic V, Ross PN (2001) Fuel cells 1:105

    Article  CAS  Google Scholar 

  25. Baker R, David PW, Zhang J (2008) Electrochim Acta 53:6906

    Article  CAS  Google Scholar 

  26. Jayaram R, Contractor AQ, Lal H (1978) J Electroanal Chem 87:225

    Article  CAS  Google Scholar 

  27. Reiser CA, Bregoli L, Patterson TW, Yi J. S., Yang JD, Perry ML, Jarvi TD (2005) Electrochem Solid-State Lett 8:A273.

Download references

Acknowledgments

This work was financially supported by the Grant-in-Aid for Scientific Research (A) (No. 19206079) to T. Ohsaka from The Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, and also by The New Energy and Industrial Technology Development Organization (NEDO), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeo Ohsaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdullah, A.M., Saleh, M.M., Awad, M.I. et al. Temperature effect on the recovery of SO2-Poisoned GC/Nano-Pt electrode towards oxygen reduction. J Solid State Electrochem 14, 1727–1734 (2010). https://doi.org/10.1007/s10008-010-1023-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1023-y

Keywords

Navigation