Skip to main content
Log in

The theory of electron transfer

  • Review Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This article provides an overview of the theory of electron transfer. Emphasis is placed on the history of key ideas and on the definition of difficult terms. Among the topics considered are the quantum formulation of electron transfer, the role of thermal fluctuations, the structures of transition states, and the physical models of rate constants. The special case of electron transfer from a metal electrode to a molecule in solution is described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Thomson JJ (1897) On cathode rays. Phil Mag 44:293–316

    Google Scholar 

  2. Bohr NHD (1913) On the constitution of atoms and molecules, part I. Phil Mag 26:1–24

    CAS  Google Scholar 

  3. Schrödinger E (1926) Quantisierung als Eigenwertproblem. Ann Phys (Leipzig) 79:361–376

    Google Scholar 

  4. Heisenberg W (1927) Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z Physik 43:172–198

    Article  Google Scholar 

  5. Born M (1926) Zur Quantenmechanik der Stoßvorgänge. Z Physik 37:863–867

    Article  Google Scholar 

  6. Born M (1954) Die statistiche Deutung der Quantenmechanik (Nobel lecture delivered on 11 December 1954 at Stockholm). English translation: The Statistical Interpretation of Quantum Mechanics, in Nobel Lectures: Physics 1942–1962 (Nobel Foundation) Amsterdam–New York (1964)

  7. Hund FH (1927) Zur Deutung der Molekelspektren I. Z Physik 40:742–764

    Article  CAS  Google Scholar 

  8. Hund FH (1927) Zur Deutung der Molekelspektren II. Z Physik 42:93–120

    Article  CAS  Google Scholar 

  9. Hund FH (1927) Zur Deutung der Molekelspektren III. Z Physik 43:805–826

    Article  CAS  Google Scholar 

  10. Fowler RH, Nordheim LW (1928) Electron emission in intense electric fields. Proc R Soc (Lond) 119:173–181

    Article  CAS  Google Scholar 

  11. Wood RW (1897) A new form of cathode discharge, and the production of X-rays, together with some notes on diffraction. Phys Rev (Ser I) 5:1–10

    Article  Google Scholar 

  12. Gurney RW, Condon EU (1928) Wave mechanics and radioactive disintegration. Nature 122:439–439

    Article  CAS  Google Scholar 

  13. Gurney RW, Condon EU (1929) Quantum mechanics and radioactive disintegration. Phys Rev 33:127–140

    Article  CAS  Google Scholar 

  14. Franck J, Dymond EG (1926) Elementary processes of photochemical reactions. Trans Faraday Soc 21:536–542

    Article  Google Scholar 

  15. Condon EU (1928) Nuclear motions associated with electron transitions in diatomic molecules. Phys Rev 32:858–872

    Article  CAS  Google Scholar 

  16. Dirac PAM (1927) The physical interpretation of the quantum dynamics. Proc R Soc (Lond) A113:621–641

    Article  Google Scholar 

  17. Gurney RW (1931) The quantum mechanics of electrolysis. Proc R Soc (Lond) A134:137–154

    Article  CAS  Google Scholar 

  18. Maxwell JC (1878) Tait’s thermodynamics. Nature 17:257–259, Reprinted in The Scientific Papers of James Clerk Maxwell. Dover, NY (1952)

    Article  Google Scholar 

  19. Waterston JJ (1892) On the physics of media that are composed of free and perfectly elastic molecules in a state of motion. Phil Trans Roy Soc (Lond) A183:1–79, Published posthumously with notes by Lord Rayleigh

    Article  Google Scholar 

  20. Keenan JH (1951) Availability and irreversibility in thermodynamics. Brit J Appl Phys 2:183–192

    Article  CAS  Google Scholar 

  21. Rant Z (1956) Exergie, ein neues Wort für technische Arbeitsfähigkeit. Forsch Geb Ingenieurwesens 22:36–37

    Google Scholar 

  22. Fletcher S (2007) A non-Marcus model for electrostatic fluctuations in long range electron transfer. J Solid State Electrochem 11:965–969

    Article  CAS  Google Scholar 

  23. Marcelin R (1915) Contribution à l’Étude de la Cinétique Physico-Chimique. Ann Phys (Paris) 3:120–231

    CAS  Google Scholar 

  24. Eyring H (1935) The activated complex in chemical reactions. J Chem Phys 3:107–115

    Article  CAS  Google Scholar 

  25. Evans MG, Polanyi M (1935) Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans Faraday Soc 31:875–894

    Article  CAS  Google Scholar 

  26. Wigner E (1938) The transition state method. Trans Faraday Soc 34:29–41

    Article  CAS  Google Scholar 

  27. Debye P, Hückel E (1923) Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen. Physik Z 24:185–206

    CAS  Google Scholar 

  28. Debye P, Hückel E (1923) Zur Theorie der Elektrolyte. II. Das Grenzgesetz für die elektrische Leitfähigkeit. Physik Z 24:305–325

    CAS  Google Scholar 

  29. Tissandier MD, Cowen KA, Feng WY, Gundlach EG, Cohen MH, Earhart AD, Coe JV, Tuttle TR (1998) The proton’s absolute aqueous enthalpy and Gibbs free energy of solvation from cluster-ion solvation data. J Phys Chem A102:7787–7794

    Google Scholar 

  30. Marcus Y (1994) A simple empirical model describing the thermodynamics of hydration of ions of widely varying charges, sizes, and shapes. Biophys Chem 51:111–127

    Article  CAS  Google Scholar 

  31. Schmid R, Miah AM, Sapunov VN (2000) A new table of the thermodynamic quantities of ionic hydration: values and some applications (enthalpy–entropy compensation and Born radii). Phys Chem Chem Phys 2:97–102

    Article  CAS  Google Scholar 

  32. Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM, Churney KL, Nuttall RL (1982) The NBS tables of chemical and thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units. J Phys Chem Ref Data (JPCRD) 11(Suppl No. 2):1–392

    Google Scholar 

  33. Randles JEB (1952) Kinetics of rapid electrode reactions. Part 2. Rate constants and activation energies of electrode reactions. Trans Faraday Soc 48:828–832

    Article  CAS  Google Scholar 

  34. Werner A (1913) On the constitution and configuration of higher-order compounds. Nobel Lecture, 11 December 1913. Reprinted in Nobel Lectures, Chemistry 1901–1921, Elsevier, Amsterdam, 1966

  35. Lewis WB, Coryell CD, Irvine JW (1949) The electron transfer (exchange) between cobaltous and cobaltic amine complexes. J Chem Soc (Suppl Issue) 2:S386–S392

    Google Scholar 

  36. Taube H, Myers H, Rich RL (1953) Observations on the mechanism of electron transfer in solution. J Am Chem Soc 75:4118–4119

    Article  CAS  Google Scholar 

  37. Taube H, Myers H (1954) Evidence for a bridged activated complex for electron transfer reactions. J Am Chem Soc 76:2103–2111

    Article  CAS  Google Scholar 

  38. Taube H (1983) Electron transfer between metal complexes—retrospective. Nobel Lecture, 8 December 1983. Reprinted in Nobel Lectures, Chemistry 1981–1990, World Scientific Publishing Co., Singapore, 1992

  39. Ball DL, King EL (1958) The exchange reactions of chromium(II) ion and certain chromium(III) complex ions. J Am Chem Soc 80:1091–1094

    Article  CAS  Google Scholar 

  40. Candlin JP, Halpern J (1965) Kinetics of the reduction of halopentaamminecobalt(III) complexes by chromium(II). Inorg Chem 4:766–767

    Article  CAS  Google Scholar 

  41. Przystas TJ, Sutin N (1973) Kinetic studies of anion-assisted outer-sphere electron transfer reactions. J Am Chem Soc 95:5545–5555

    Article  CAS  Google Scholar 

  42. Chou M, Creutz C, Sutin N (1977) Rate constants and activation parameters for outer-sphere electron-transfer reactions and comparisons with the predictions of Marcus theory. J Am Chem Soc 99:5615–5623

    Article  CAS  Google Scholar 

  43. Creutz C, Taube H (1969) A direct approach to measuring the Franck–Condon barrier to electron transfer between metal ions. J Am Chem Soc 91:3988–3989

    Article  CAS  Google Scholar 

  44. Creutz C, Taube H (1973) Binuclear complexes of ruthenium ammines. J Am Chem Soc 95:1086–1094

    Article  CAS  Google Scholar 

  45. Day P, Hush NS, Clark RJH (2008) Mixed valence: origins and developments. Phil Trans Roy Soc A366:5–14

    Google Scholar 

  46. Biner M, Buergi H-B, Ludi A, Roehr C (1992) Crystal and molecular structures of [Ru(bpy)3][PF6]3 and [Ru(bpy)3][PF6]2 at 105 K. J Am Chem Soc 114:5197–5203

    Article  CAS  Google Scholar 

  47. Young RC, Keene FR, Meyer TJ (1977) Measurement of rates of electron transfer between Ru(bpy) 3+3 and Fe(phen) 2+3 and between Ru(phen) 3+3 and Ru(bpy) 2+3 by differential excitation flash photolysis. J Am Chem Soc 99:2468–2473

    Article  CAS  Google Scholar 

  48. George P, Hanania GIH, Irvine DH (1959) Potentiometric studies of some dipyridyl complexes. J Chem Soc 508:2548–2554

    Article  Google Scholar 

  49. Yee EL, Cave RJ, Guyer KL, Tyma PD, Weaver MJ (1979) A survey of ligand effects upon the reaction entropies of some transition metal redox couples. J Am Chem Soc 101:1131–1137

    Article  CAS  Google Scholar 

  50. Bruhn H, Nigam S, Holzwarth JF (1982) Catalytic influence of the environment on outer-sphere electron-transfer reactions in aqueous solutions. Faraday Discuss Chem Soc 74:129–140

    Article  Google Scholar 

  51. Evans MG (1938) Thermodynamical treatment of transition state. Trans Faraday Soc 34:49–57

    Article  CAS  Google Scholar 

  52. Marcus RA (1956) On the theory of oxidation reduction reactions involving electron transfer. I. J Chem Phys 24:966–978

    Article  CAS  Google Scholar 

  53. Marcus RA (1956) Electrostatic free energy and other properties of states having nonequilibrium polarization (I). J Chem Phys 24:979–989

    Article  CAS  Google Scholar 

  54. Marcus RA (1992) Electron transfer reactions in chemistry: theory and experiment. Nobel Lecture, 8 December 1992. Reprinted in Nobel Lectures, Chemistry 1991–1995, World Scientific Publishing Co., Singapore (1997)

  55. Marcus RA (1994) Free energy of non-equilibrium polarization systems. 4. A formalism based on the non-equilibrium dielectric displacement. J Phys Chem 98:7170–7174

    Article  CAS  Google Scholar 

  56. George P, Griffith JS (1959) In: Boyer PD, Lardy H, Myrbäck N (eds) The enzymes, vol 1. New York, Academic

    Google Scholar 

  57. Kubo R, Toyozawa Y (1955) Application of the method of generating function to radiative and non-radiative transitions of a trapped electron in a crystal. Prog Theor Phys 13:160–182

    Article  Google Scholar 

  58. Fletcher S (2008) The new theory of electron transfer. Thermodynamic potential profiles in the inverted and superverted regions. J Solid State Electrochem 12:765–770

    Article  CAS  Google Scholar 

  59. Hoddenbagh JMA, Macartney DH (1990) Kinetics of electron-transfer reactions involving the Ru(CN) 4–/3–6 couple in aqueous media. Inorg Chem 29:245–251

    Article  CAS  Google Scholar 

  60. Meyer TJ, Taube H (1968) Electron-transfer reactions of ruthenium ammines. Inorg Chem 7:2369–2379

    Article  CAS  Google Scholar 

  61. Bernhard P, Helm L, Ludi A, Merbach AE (1985) Direct measurement of a prominent outer-sphere electron self-exchange: kinetic parameters for the hexaaquaruthenium(II)/(III) couple determined by oxygen-17 and ruthenium-99 NMR. J Am Chem Soc 107:312–317

    Article  CAS  Google Scholar 

  62. Brunschwig BS, Creutz C, Macartney DH, Sham T-K, Sutin N (1982) The role of inner-sphere configuration changes in electron exchange reactions of metal complexes. Disc Faraday Soc 74:113–127

    Article  Google Scholar 

  63. Jolley WH, Stranks DR, Swaddle TW (1990) Pressure effect on the kinetics of the hexaaquairon(II/III) self-exchange reaction in aqueous perchloric acid. Inorg Chem 29:1948–1951

    Article  CAS  Google Scholar 

  64. Habib HS, Hunt JP (1966) Electron-transfer reactions between aqueous cobaltous and cobaltic ions. J Am Chem Soc 88:1668–1671

    Article  CAS  Google Scholar 

  65. Nielson RM, McManis GE, Safford LK, Weaver MJ (1989) Solvent and electrolyte effects on the kinetics of ferrocenium–ferrocene self-exchange. A re-evaluation. J Phys Chem 93:2152–2157

    Article  CAS  Google Scholar 

  66. Kirchner K, Dang SQ, Stebler M, Dodgen HW, Wherland S, Hunt JP (1989) Temperature, pressure, and electrolyte dependence of the ferrocene/ferrocenium electron self-exchange in acetonitrile-d3. Inorg Chem 28:3604–3606

    Article  CAS  Google Scholar 

  67. Marcus RA (1960) Exchange reactions and electron transfer reactions including isotopic exchange. Theory of oxidation–reduction reactions involving electron transfer. Part 4—a statistical–mechanical basis for treating contributions from solvent, ligands, and inert salt. Disc Faraday Soc 29:21–31

    Article  Google Scholar 

  68. Kadhum AAH, Salmon GA (1982) General discussion. Faraday Disc Chem Soc Electron Proton Transfer R Soc Chem (Lond) 74:191–193

    Google Scholar 

  69. Miller JR, Calcaterra LT, Closs GL (1984) Intramolecular long-distance electron transfer in radical anions. The effects of free energy and solvent on the reaction rates. J Am Chem Soc 106:3047–3049

    Article  CAS  Google Scholar 

  70. Kadhum AAH, Salmon GA (1986) Reactivity of solvated electrons in tetrahydrofuran. J Chem Soc Faraday Trans I 82:2521–2530

    Article  CAS  Google Scholar 

  71. Robertson HP (1929) The uncertainty principle. Phys Rev 34:163–164

    Article  Google Scholar 

  72. Dirac PAM (1930) The principles of quantum mechanics. Clarendon, Oxford

    Google Scholar 

  73. Slater JC (1930) Atomic shielding constants. Phys Rev 36:57–64

    Article  CAS  Google Scholar 

  74. Gütlich P, Garcia Y, Goodwin HA (2000) Spin crossover phenomena in Fe(II) complexes. Chem Soc Rev 29:419–427

    Article  Google Scholar 

  75. Doine H, Swaddle TW (1988) Pressure effects on the rate of electron transfer between tris(1, 10-phenanthroline)iron(II) and -(III) in aqueous solution and in acetonitrile. Can J Chem 66:2763–2767

    Article  CAS  Google Scholar 

  76. Warren RML, Lappin AG, Mehta BD, Neumann HM (1990) Electron-transfer reactions of optically active tris(phenanthroline) cobalt (3+/2+) and derivatives. Inorg Chem 29:4185–4189

    Article  CAS  Google Scholar 

  77. Orear J, Rosenfeld AH, Schluter RA (1950) Nuclear physics, a course given by Enrico Fermi at the University of Chicago. University of Chicago Press, Chicago

    Google Scholar 

  78. Dirac PAM (1927) The quantum theory of the emission and absorption of radiation. Proc R Soc (Lond) A114:243–265

    Article  Google Scholar 

  79. Boltzmann L (1909) In: Hasenöhrl F (ed) Wissenschaftliche Abhandlungen, vol I–III. Barth, Leipzig, re-issued Chelsea Publishing Co., New York, 1968

    Google Scholar 

  80. Levich VG, Dogonadze RR (1959) The theory of non-radiative electron transitions between ions in solution. Dokl Akad Nauk 124:123–126

    CAS  Google Scholar 

  81. Dogonadze RR, Chizmadzhev YA (1962) Kinetics of some electrochemical oxidation–reduction reactions on metals (in Russian). Dokl Akad Nauk 145:848–851

    Google Scholar 

  82. Kramers HA (1940) Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7:284–304

    Article  CAS  Google Scholar 

  83. Butler JAV (1924) Studies in heterogeneous equilibria. Part II—the kinetic interpretation of the Nernst theory of electromotive force. Trans Faraday Soc 19:729–733

    Article  Google Scholar 

  84. Erdey-Grúz T, Volmer M (1930) Zur Theorie der Wasserstoffüberspannung. Z Physik Chem A150:203–213

    Google Scholar 

  85. Parsons R (1951) General equations for the kinetics of electrode processes. Trans Faraday Soc 47:1332–1344

    Article  CAS  Google Scholar 

  86. Tafel J (1905) Über die Polarisation bei kathodischer Wasserstoffentwicklung. Z Physik Chem 50:641–712

    CAS  Google Scholar 

  87. Fletcher S (2009) Tafel slopes from first principles. J Solid State Electrochem 13:537–549

    Article  CAS  Google Scholar 

  88. Zhang J, Kuznetsov AM, Medvedev IG, Chi Q, Albrecht T, Jensen PS, Ulstrup J (2008) Single-molecule electron transfer in electrochemical environments. Chem Rev 108:2737–2791

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Fletcher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fletcher, S. The theory of electron transfer. J Solid State Electrochem 14, 705–739 (2010). https://doi.org/10.1007/s10008-009-0994-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0994-z

Keywords

Navigation