Skip to main content
Log in

Electrochemical solid-phase nanoextraction of copper(II) on a magnesium oxinate-modified carbon paste electrode by cyclic voltammetry

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Solid-phase nanoextraction is a sample preparation technique, which combines nanotechnology with analytical chemistry, and brings analytical chemistry to a higher level, particularly for complex system analysis. This paper describes a typical example of electrochemical solid-phase nanoextraction and electrochemical detection. Trace amounts of copper (5.0 × 10−13 mol/L) were extracted by electrochemical solid-phase nanoextraction on to the magnesium oxinate nanoparticle-modified carbon paste electrode surface in a pH 7.2 phosphate buffer system at −0.50 V for 100 s. The extraction is achieved by the cation exchange between copper(II) in the aqueous solution and magnesium(II) from the magnesium oxinate nanoparticles on the electrode surface. The extracted copper shows an irreversible anodic peak at about 0.2 V (vs. saturated calomel electrode). The peak current is proportional to the scan rate, which shows this to be a surface-controlled process. The oxidation peak current is proportional to the logarithm of the copper concentration in the range 5.0 × 10−13 ∼ 5.0 × 10−7 M with a slope of 2.215. This powerful method uses the carbon paste electrode to combine extraction with electrochemical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pawliszyn J (1997) Solid phase microextraction. Theory and practice. Wiley, New York

    Google Scholar 

  2. Sparrenberger RC, Cross CK, Conte ED (2004) Anal Chem 76:6156–6159

    Article  CAS  Google Scholar 

  3. Zhang Z, Yang M, Pawliszyn J (1994) Anal Chem 66:844A–853A

    Article  CAS  Google Scholar 

  4. Reid KR, Kennedy LJ, Crick EW, Conte ED (2002) J Chromatogr A 975:135–143

    Article  CAS  Google Scholar 

  5. Ceglarek U, Efer J, Schreiber A, Zwanziger E, Engewald W (1999) Fresenius J Anal Chem 365:674–681

    Article  CAS  Google Scholar 

  6. Reverté S, Borrull F, Pocurull E, Marcé RM (2003) J Chromatogr A 1010:225–232

    Article  Google Scholar 

  7. Bystol AJ, Whitcomb JL, Campiglia AD (2001) Environ Sci Technol 35:2566–2571

    Article  CAS  Google Scholar 

  8. Li J, Zhao X, Shi Y, Cai Y, Mou S, Jiang G (2008) J Chromatogr 1180:24–31

    Article  CAS  Google Scholar 

  9. Pan C, Xu S, Zou H, Guo Z, Zhang Y, Guo B (2005) J Am Soc Mass Spectrom 16:263–270

    Article  CAS  Google Scholar 

  10. Wu J, Mullett WM, Pawliszyn J (2002) Anal Chem 74:4855–4859

    Article  CAS  Google Scholar 

  11. Luscombe DL, Bond AM, Davey DE, Bixler JW (1990) Anal Chem 62:27–31

    Article  CAS  Google Scholar 

  12. Valcárcel M, Cárdenas S, Simonet BM (2007) Anal Chem 79:4788–4797

    Article  Google Scholar 

  13. Durst RA, Baumner AJ, Murry RW, Buck RP, Andrieux CP (1997) Pure and Appl Chem 69:1317–1323

    Article  CAS  Google Scholar 

  14. Inzelt G (1994) In: Bard AJ (ed) Mechanism of charge transport in polymer-modified electrodes in electroanalytical chemistry, vol. 18. Marcel Dekker Inc, NY

    Google Scholar 

  15. Wang J (1989) In: Bard AJ (ed) Voltammetry following nonelectrolytic preconcentration in electroanalytical chemistry, vol. 16. Marcel Dekker Inc, NY

    Google Scholar 

  16. Kannuck RM, Bellama JM, Durst RA (1988) Anal Chem 60:142–147

    Article  CAS  Google Scholar 

  17. Svancara I, Vytras K, Kalcher K, Walcarius A, Wang J (2009) Electroanal 2:17–28

    Google Scholar 

  18. Luscombe DL, Bond AM, Davey DE, Bixler JW (1990) Anal Chem 62:27–31

    Article  CAS  Google Scholar 

  19. Brainina K, Schäfer H, Ivanova A, Khanina R (1996) Anal Chim Acta 330:175–181

    Article  CAS  Google Scholar 

  20. Bard AJ, Faulkner LR (2003) Electrochemical methods: fundamentals and applications, 2nd edn. John Wiley, NY, pp 156–181

    Google Scholar 

  21. Yao S, Hertzg DE, Eng SZ, Mikkelsen JC, Semitago JG (2003) J Colloid interface Sci 268:143–153

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge the financial support of the Chinese National Science Foundation (20875063), Liaoning Education Ministry (2004-c022), National Key Laboratory on Electroanalytical Chemistry (2006-06), and the Science Bureau of the Shenyang government (2007-GX-32).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongchun Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Y., Zhang, S., Tang, Y. et al. Electrochemical solid-phase nanoextraction of copper(II) on a magnesium oxinate-modified carbon paste electrode by cyclic voltammetry. J Solid State Electrochem 14, 1609–1614 (2010). https://doi.org/10.1007/s10008-009-0991-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0991-2

Keywords

Navigation