Skip to main content
Log in

Corrosion analysis and monitoring of the environmental factors for the deterioration of chromium-bearing reinforcing steel in mortar

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

To understand environmental factors, Cl ion concentration and pH were monitored by inserting microelectrodes into artificial pores in the mortar. The corrosion behavior of reinforcing steels containing chromium were investigated with carbon steel (SM) by electrochemical impedance spectroscopy (EIS). From the EIS, the corrosion resistance of the Cr-bearing reinforcing steel was visibly higher than the SM reinforcing steel. Simultaneously, the Cl ion concentration in the mortar was obtained using Ag/AgCl microelectrodes, showing that this behavior is generally controlled by diffusion. Similarly, the pH in the mortar was obtained using W/WOx microelectrodes. With a 20-mm cover thickness, pH was limited to approximately pH 11, but with a 10-mm cover thickness, pH continued to decrease to around pH 9.5. Solutions were prepared simulating the condition in the pores in mortar and were used in EIS measurements. The charge transfer resistance, R ct, in the simulated solutions showed good correspondence with that in the actual mortar. This is attributed to the fact that the corrosion of reinforcing steel was controlled by the solution conditions (mainly Cl concentration and pH) in mortar. Moreover, it was found that, as compared with SM, Cr-bearing steel could keep the passive film in severe condition, and have long incubation time until the passive film was destroyed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ahmad S (2003) Cem Concr Compos 25:459

    Article  CAS  Google Scholar 

  2. Andrade C, Alonso C (1996) Constr Build Mater 10:315

    Article  Google Scholar 

  3. Glass GK, Page CL, Short NR (1991) Corros Sci 32:1283

    Article  CAS  Google Scholar 

  4. Austin SA, Lyons R, Ing MJ (2004) Corrosion 60:203

    Article  CAS  Google Scholar 

  5. González JA, Miranda JM, Birbilis N, Feliu S (2005) Corrosion 61:37

    Article  Google Scholar 

  6. Qiao G, Ou J (2007) Electrochim Acta 52:8008

    Article  CAS  Google Scholar 

  7. Montemor MF, Simões AMP, Ferreira MGS (2003) Cem Concr Compos 25:491

    Article  CAS  Google Scholar 

  8. Masi M, Colella D, Radaelli G, Bertolini L (1997) Cem Concr Res 27:1591

    Article  CAS  Google Scholar 

  9. Janotka I, Krajci L, Komlos K, Frtalova D (1989) Int J Cem Compos Lightweight Concr 11:221

    Article  CAS  Google Scholar 

  10. McCarter WJ, Vennesland O (2004) Constr Build Mater 18:351

    Article  Google Scholar 

  11. Erdogdu S, Kondratova IL, Bremner TW (2004) Cem Concr Res 34:603

    Article  CAS  Google Scholar 

  12. Poupard O, Ait-Mokhtar A, Dumargue P (2004) Cem Concr Res 34:991

    Article  CAS  Google Scholar 

  13. Lindvall A (2007) Cem Concr Compos 29:88

    Article  CAS  Google Scholar 

  14. Atkins CP, Carter MA, Scantelbury JD (2001) Cem Concr Res 31:1207

    Article  CAS  Google Scholar 

  15. Atkins CP, Scantelbury JD, Nedwell PJ, Blatch SP (1996) Cem Concr Res 26:319

    Article  CAS  Google Scholar 

  16. Montemor MF, Alves JH, Simões AM, Fernandes JCS, Lourenço Z, Costa AJS, Appleton AJ, Ferreira MGS (2006) Cem Concr Compos 28:233

    Article  CAS  Google Scholar 

  17. Macdonald DD, Liu J, Lee D (2004) J Appl Electrochem 34:577

    Article  CAS  Google Scholar 

  18. Kriksunov LB, Macdonald DD (1994) J Electrochem Soc 141:3002

    Article  CAS  Google Scholar 

  19. Lay P, Lawrence PF, Wilkins NJM, Williams DE (1985) J Appl Electrochem 15:755

    Article  CAS  Google Scholar 

  20. Sanchez M, Gregori J, Alonso C, Garcia-Jareno JJ, Takenouti H, Vicente F (2007) Electrochim Acta 52:7634

    Article  CAS  Google Scholar 

  21. John DG, Searson PC, Dawson JL (1981) Br Corros J 16:102

    CAS  Google Scholar 

  22. Macdonald DD, Mckubre MCH, Urquidi-Macdonald M (1988) Corrosion 44:2

    CAS  Google Scholar 

  23. Hachani L, Fiaud C, Triki E, Raharinaivo A (1994) Br Corros J 29:122

    CAS  Google Scholar 

  24. Poupard O, Ait-Mokhtar A, Dumargue P (2003) J Mater Sci 38:2845

    Article  CAS  Google Scholar 

  25. Glass GK, Reddy B, Buenfeld NR (2000) Corros Sci 42:1587

    Article  CAS  Google Scholar 

  26. Sagoe-Crentsil KK, Glasser FP, Irvine JTS (1992) Br Corros J 27:113

    CAS  Google Scholar 

  27. Glass GK, Buenfeld NR (1997) Corros Sci 39:1001

    Article  CAS  Google Scholar 

  28. Kim J, Nishikata A, Tsuru T (2002) Zairyou-to-Kankyo 51:54

    CAS  Google Scholar 

  29. Sakashita S, Nakayama T, Hamazaki Y, Sujii K, Sugimoto K (1999) Zairyou-to-Kankyo 48:705

    CAS  Google Scholar 

  30. Tae S-H, Noguchi T, Ujiro T (2007) ISIJ Int 47:146

    Article  CAS  Google Scholar 

  31. Tae S-H, Kyung J-W, Ujiro T (2007) ISIJ Int 47:875

    Article  CAS  Google Scholar 

  32. Tae S-H, Ujiro T (2007) ISIJ Int 47:715

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyasu Nishimura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vedarajan, R., Nishimura, T. Corrosion analysis and monitoring of the environmental factors for the deterioration of chromium-bearing reinforcing steel in mortar. J Solid State Electrochem 14, 1457–1464 (2010). https://doi.org/10.1007/s10008-009-0949-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0949-4

Keywords

Navigation