Skip to main content
Log in

Morphology-to-properties correlations in anodic porous InP layers

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, we investigate the properties of porous structures anodically grown onto n-InP (100) in HCl. In situ electrochemical characterizations show the pore morphology strongly influences the properties of the InP surfaces. Both dc- and ac-electrochemical measurements reveal an enhancement of the capacitive current and a modification of the electronic distribution at the interface. Photocurrent spectra performed during the pore growth are also strongly modified. For low anodic charges, an increase of the photocurrent with a redshift of the absorption edge is measured. These evolutions can be respectively ascribed (i) to a reflection decrease due to a surface roughening and (ii) to the creation of surface states within the band gap. For higher anodic charges, the photocurrent drops with a narrowing of the spectrum. Using a model based on the “dead” layer, the porous layer is considered as an absorbent film that progressively attenuates the photocurrent of the bulk semiconductor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Santinacci L, Djenizian T (2008) C R Chimie 11 11:964–983

    CAS  Google Scholar 

  2. Kohl PA, Wolowodiuk C, Ostermayer FH Jr (1983) J Electrochem Soc 130:2288–2293

    Article  CAS  Google Scholar 

  3. Takizawa T, Arai S, Nakahara M (1994) Jpn J Appl Phys 33:L643–L645

    Article  Google Scholar 

  4. Foll H, Langa S, Carstensen J, Christophersen M, Tiginyanu IM (2003) Adv Mater 15:183–198

    Article  CAS  Google Scholar 

  5. Langa S, Tiginyanu IM, Carstensen J, Christophersen M, Foll H (2000) Electrochem Solid-State Lett 3:514–516

    Article  CAS  Google Scholar 

  6. Langa S, Carstensen J, Tiginyanu IM, Christophersen M, Foll H (2001) Electrochem Solid-State Lett 4:G50–G52

    Article  Google Scholar 

  7. Langa S, Tiginyanu IM, Carstensen J, Christophersen M, Foll H (2003) Appl Phys Lett 82:278–280

    Article  CAS  Google Scholar 

  8. Schmuki P, Santinacci L, Djenizian T, Lockwood DJ (2000) Phys Status Solidi A 182:51–61

    Article  CAS  Google Scholar 

  9. Fujikura H, Liu AM, Hamamatsu A, Sato T, Hasegawa H (2000) Jpn J Appl Phys 39:4616–4620

    Article  CAS  Google Scholar 

  10. O’Dwyer C, Buckley DN, Sutton D, Newcomb SB (2006) J Electrochem Soc 153:G1039

    Article  Google Scholar 

  11. Goncalves AM, Santinacci L, Eb A, Gerard I, Mathieu C, Etcheberry A (2007) Electrochem Solid-State Lett 10:D35–D37

    Article  Google Scholar 

  12. Ulin VP, Konnikov SG (2007) Semiconductors 41:832–844

    Article  CAS  Google Scholar 

  13. Peter LM, Riley DJ, Wielgosz RI (1995) Appl Phys Lett 66:2355–2357

    Article  CAS  Google Scholar 

  14. Konstantinov AO, Harris CI, Janzen E (1994) Appl Phys Lett 65:2699–2701

    Article  CAS  Google Scholar 

  15. Erne BH, Vanmaekelbergh D, Kelly JJ (1996) J Electrochem Soc 143:305–314

    Article  CAS  Google Scholar 

  16. van de Lagemaat J, Plakman M, Vanmaekelbergh D, Kelly JJ (1996) Appl Phys Lett 69:2246–2248

    Article  Google Scholar 

  17. Erne BH, Mathieu C, Vigneron J, Million A, Etcheberry A (2000) J Electrochem Soc 147:3759–3767

    Article  CAS  Google Scholar 

  18. Allongue P, Chazalviel JN, Henry de Villeneuve C, Ozanam F (2007) J Phys Chem C 111:5497–5499

    Article  CAS  Google Scholar 

  19. Tenne R, Hodes G (1980) Appl Phys Lett 37:428–430

    Article  CAS  Google Scholar 

  20. Tenne R (1983) Appl Phys Lett 43:201–203

    Article  CAS  Google Scholar 

  21. Jaume J, Debiemme-Chouvy C, Vigneron J, Herlem M, Khoumri EM, Sculfort JL, Le Roy D, Etcheberry A (1994) J Phys III 4:273–291

    Article  CAS  Google Scholar 

  22. Schuurmans FJP, Vanmaekelbergh D, van de Lagemaat J, Lagendijk A (1999) Science 284:141–143

    Article  CAS  Google Scholar 

  23. Morrison SR (1980) Electrochemistry at semiconductor and oxidized metal electrodes. Plenum, New York

    Google Scholar 

  24. Mora-Sero I, Fabregat-Santiago F, Denier B, Bisquert J, Tena-Zaera R, Elias J, Levy-Clement C (2006) App Phys Lett 89:203117 (3pp)

    Article  Google Scholar 

  25. Cavallini A, Polenta L, Rossi M, Stoica T, Calarco R, Meijers R, Richter T, Luth H (2007) Nano Lett 7:2166–2170

    Article  CAS  Google Scholar 

  26. Wittry DB, Kyser DF (1967) J Appl Phys 38:375–382

    Article  CAS  Google Scholar 

  27. Langmann U (1973) Appl Phys 1:219–221

    Article  CAS  Google Scholar 

  28. Gärtner WW (1959) Phys Rev 116:84–87

    Article  Google Scholar 

  29. Aspnes DE, Studna AA (1983) Phys Rev B 27:985–1009

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Dr. Fouad Maroun (Ecole Polytechnique—CNRS) for SEM obsevations. Dr. Nathalie Simon (Université de Versailles Saint Quentin - CNRS) is kindly acknowledged for helpful discussions about concepts of semiconductors’ electrochemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lionel Santinacci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santinacci, L., Gonçalves, AM., Bouttemy, M. et al. Morphology-to-properties correlations in anodic porous InP layers. J Solid State Electrochem 14, 1177–1184 (2010). https://doi.org/10.1007/s10008-009-0942-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0942-y

Keywords

Navigation