Skip to main content
Log in

Kinetics of mixed-controlled oxygen reduction at nafion-impregnated Pt-alloy-dispersed carbon electrode by analysis of cathodic current transients

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The effects of Co alloying to Pt catalyst and Nafion pretreatment by NaClO4 solution on the rate-determining step (RDS) of oxygen reduction at Nafion-impregnated Pt-dispersed carbon (Pt/C) electrode were investigated as a function of the potential step ΔE employing potentiostatic current transient (PCT) technique. For this purpose, the cathodic PCTs were measured on the pure Nafion-impregnated and partially Na+-doped Nafion-impregnated Pt/C and PtCo/C electrodes in an oxygen-saturated 1 M H2SO4 solution and analyzed. From the shape of the cathodic PCTs and the dependence of the instantaneous current on the value of ΔE, it was confirmed that oxygen reduction at the pure Nafion-impregnated electrodes is controlled by charge transfer at the electrode surface mixed with oxygen diffusion in the solution below the transition potential step |ΔE tr| in absolute value, whereas oxygen reduction is purely governed by oxygen diffusion above |ΔE tr|. On the other hand, the RDS of oxygen reduction at the partially Na+-doped Nafion-impregnated electrodes below |ΔE tr| is charge transfer coupled with proton migration, whereas above |ΔE tr|, it becomes proton migration in the Nafion electrolyte instead of oxygen diffusion. Consequently, it is expected in real fuel cell system that the cell performance is improved by Co alloying since the electrode reaches the maximum diffusion (migration) current even at small value of |ΔE|, whereas the cell performance is aggravated by Nafion pretreatment due to the decrease in the maximum diffusion (migration) current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. De Souza A, Gonzalez ER (2003) J Solid State Electrochem 7:651. doi:10.1007/s10008-003-0363-2

    Article  Google Scholar 

  2. Beard BC, Ross PN (1986) J Electrochem Soc 133:1839. doi:10.1149/1.2109033

    Article  CAS  Google Scholar 

  3. Paffett MT, Berry GJ, Gottesfeld S (1988) J Electrochem Soc 135:1431. doi:10.1149/1.2096016

    Article  CAS  Google Scholar 

  4. Beard BC, Ross PN (1990) J Electrochem Soc 137:3368. doi:10.1149/1.2086223

    Article  CAS  Google Scholar 

  5. Mukerjee S, Srinivasan S (1993) J Electroanal Chem 357:201. doi:10.1016/0022-0728(93)80380-Z

    Article  CAS  Google Scholar 

  6. Watanabe M, Tsurumi K, Mizukami T, Nakamura T, Stonehart P (1994) J Electrochem Soc 141:2659. doi:10.1149/1.2059162

    Article  CAS  Google Scholar 

  7. Toda T, Igarashi H, Uchida H, Watanabe M (1999) J Electrochem Soc 146:3750. doi:10.1149/1.1392544

    Article  CAS  Google Scholar 

  8. Min M, Cho J, Cho K, Kim H (2000) Electrochim Acta 45:4211. doi:10.1016/S0013-4686(00)00553-3

    Article  CAS  Google Scholar 

  9. Antolini E, Passos RR, Ticianelli EA (2002) Electrochim Acta 48:263. doi:10.1016/S0013-4686(02)00644-8

    Article  CAS  Google Scholar 

  10. Paulus UA, Scherer GG, Wokaun A, Schmidt TJ, Stamenkovic V, Radmilovic V, Markovic NM, Ross PN (2002) J Phys Chem B 106:4181. doi:10.1021/jp013442l

    Article  CAS  Google Scholar 

  11. Antolini E, Salgado JRC, Giz MJ, Gonzalez ER (2005) Int J Hydrogen Energy 30:1213. doi:10.1016/j.ijhydene.2005.05.001

    Article  CAS  Google Scholar 

  12. Remita H, Siril PF, Mbomekalle IM, Keita B, Nadjo L (2006) J Solid State Electrochem 10:506. doi:10.1007/s10008-005-0005-y

    Article  CAS  Google Scholar 

  13. Li X, Colon-Mercado HR, Wu G, Lee JW, Popov BN (2007) Electrochem Solid-State Lett 10:B201. doi:10.1149/1.2777009

    Article  CAS  Google Scholar 

  14. Koh S, Yu C, Mani P, Srivastava R, Strasser P (2007) J Power Sources 172:50. doi:10.1016/j.jpowsour.2007.01.002

    Article  CAS  Google Scholar 

  15. Luna AMC, Bonesi A, Triaca WE, Baglio V, Antonucci V, Arico AS (2008) J Solid State Electrochem 12:643. doi:10.1007/s10008-007-0334-0

    Article  Google Scholar 

  16. Lee MH, Wang PS, Do JS (2008) J Solid State Electrochem 12:879. doi:10.1007/s10008-007-0477-z

    Article  CAS  Google Scholar 

  17. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Appl Catal B-Environ 56:9

    Article  CAS  Google Scholar 

  18. O’Hayre RP, Cha SW, Colella W, Prinz FB (2006) Fuel Cell Fundamentals. Wiley, Hoboken, pp 112–121

    Google Scholar 

  19. Scharifker BR, Zelenay P, JO’M Bockris (1987) J Electrochem Soc 134:2714. doi:10.1149/1.2100276

    Article  CAS  Google Scholar 

  20. Zecevic SK, Wainright JS, Litt MH, Gojkovic SL, Savinell RF (1997) J Electrochem Soc 144:2973. doi:10.1149/1.1837946

    Article  CAS  Google Scholar 

  21. Eikerling M, Kornyshev AA (1999) J Electroanal Chem 475:107. doi:10.1016/S0022-0728(99)00335-6

    Article  CAS  Google Scholar 

  22. Lee SJ, Pyun SI (2007) Electrochim Acta 52:6525. doi:10.1016/j.electacta.2007.04.081

    Article  CAS  Google Scholar 

  23. Lee SK, Pyun SI, Lee SJ, Jung KN (2007) Electrochim Acta 53:740. doi:10.1016/j.electacta.2007.07.042

    Article  CAS  Google Scholar 

  24. Lee JW, Pyun SI (2005) Electrochim Acta 50:1777. doi:10.1016/j.electacta.2004.08.046

    Article  CAS  Google Scholar 

  25. Lee SJ (2008) Ph.D. Thesis, Chapter 3, Korea Advanced Institute of Science and Technology, Daejeon

  26. Ayad A, Naimi Y, Bouet J, Fauvarque JF (2004) J Power Sources 130:50. doi:10.1016/j.jpowsour.2003.11.064

    Article  CAS  Google Scholar 

  27. Biegler T, Rand DAJ, Woods R (1971) J Electroanal Chem 29:269. doi:10.1016/S0022-0728(71)80089-X

    Article  CAS  Google Scholar 

  28. Hoare JP (1974) In: Bard AJ (ed) Encyclopedia of the Electrochemistry of the Elements, vol II. Marcel Dekker, New York, p 191

    Google Scholar 

  29. Tarasevich MR, Sadkovski A, Yeager E (1983) In: Conway BE, Bockris JO’M, Khan SVM, White RE (eds) Comprehensive Treatise of Electrochemistry, Vol. 7. Plenum, New York, p 301

    Google Scholar 

  30. Yaeger E (1984) Electrochim Acta 29:1527. doi:10.1016/0013-4686(84)85006-9

    Article  Google Scholar 

  31. O’Sullivan EJM, Calvo EJ (1987) In: Compton RG (ed) Comprehensive Chemical Kinetics, vol 27. Elsevier, Amsterdam, p 247

    Google Scholar 

  32. Pletcher D, Sotiropoulos S (1993) J Electroanal Chem 356:109. doi:10.1016/0022-0728(93)80514-I

    Article  CAS  Google Scholar 

  33. Floriano JB, Ticianelli EA, Gonzalez ER (1994) J Electroanal Chem 367:157. doi:10.1016/0022-0728(93)03007-C

    Article  CAS  Google Scholar 

  34. Mello RMQ, Ticianelli EA (1997) Electrochim Acta 42:1031. doi:10.1016/S0013-4686(96)00282-4

    Article  CAS  Google Scholar 

  35. Wen CJ, Boukamp BA, Huggins RA, Weppner W (1979) J Electrochem Soc 126:2258. doi:10.1149/1.2128939

    Article  CAS  Google Scholar 

  36. Perez J, Gonzalez ER, Ticianelli EA (1998) Electrochim Acta 44:1329. doi:10.1016/S0013-4686(98)00255-2

    Article  CAS  Google Scholar 

  37. Jiang J, Yi B (2005) J Electroanal Chem 577:107. doi:10.1016/j.jelechem.2004.11.022

    Article  CAS  Google Scholar 

  38. Han JN, Seo M, Pyun SI (2001) J Electroanal Chem 499:152. doi:10.1016/S0022-0728(00)00506-4

    Article  CAS  Google Scholar 

  39. Paulus UA, Wokaun A, Scherer GG, Schmidt TJ, Stamenkovic V, Markovic NM, Ross PN (2002) Electrochim Acta 47:3787. doi:10.1016/S0013-4686(02)00349-3

    Article  CAS  Google Scholar 

  40. Bard AJ (2000) Electrochemical Methods, 2nd edn. Wiley, New York, p 163

    Google Scholar 

  41. Montella C (2002) J Electroanal Chem 518:61. doi:10.1016/S0022-0728(01)00691-X

    Article  CAS  Google Scholar 

  42. Kim JS, Pyun SI, Lee JW, Song RH (2007) J Solid State Electrochem 11:117. doi:10.1007/s10008-005-0080-0

    Article  CAS  Google Scholar 

  43. Kim JS, Pyun SI (2008) J Electrochem Soc 155:B8. doi:10.1149/1.2799084

    Article  CAS  Google Scholar 

  44. Lee SJ, Pyun SI (2008) J Electrochem Soc 155:B1274. doi:10.1149/1.2987944

    Article  CAS  Google Scholar 

  45. Lee JW, Pyun SI, Filipek S (2003) Electrochim Acta 48:1603. doi:10.1016/S0013-4686(03)00085-9

    Article  CAS  Google Scholar 

  46. Lee SJ, Pyun SI, Lee JW (2005) Electrochim Acta 50:1121. doi:10.1016/j.electacta.2004.08.009

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Center for Advanced Materials Processing (CAMP) of the twenty-first century Frontier R&D Program funded by the Ministry of Commerce, Industry and Energy (MOCIE), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su-Il Pyun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SJ., Pyun, SI. Kinetics of mixed-controlled oxygen reduction at nafion-impregnated Pt-alloy-dispersed carbon electrode by analysis of cathodic current transients. J Solid State Electrochem 14, 775–786 (2010). https://doi.org/10.1007/s10008-009-0854-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0854-x

Keywords

Navigation