Skip to main content
Log in

Electrochemical behavior of passive films on Al–17Si–14Mg (wt.%) alloy in near-neutral solutions

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The anodic polarization behavior of alloy Al–17Si–14Mg in borate solutions with and without 0.01 M NaCl was compared to that for pure Al. Results showed that, for the alloy, the passive current density increased but the pitting susceptibility decreased. The first effect was ascribed to a significant electrochemical activity of the Mg2Si intermetallics and the second to improved stability of the oxide film. X-ray photoelectron spectroscopy analysis of potentiostatically formed passive film on the alloy showed that it consisted of aluminum oxyhydroxide with incorporation of silicon in its elemental and two oxidized states (+3 and +4). Mott–Schottky analysis showed that trivalent silicon ion acted as an n-type dopant in the film. The interrelationship between passive film composition, electronic properties, and pitting behavior has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Santhosh Kumar S, Seshu Bai V, Rajasekharan T (2008) J Phys D Appl Phys 41:105403. doi:10.1088/0022-3727/41/10/105403

    Article  Google Scholar 

  2. Ren S, He X, Qu X, Humail IS, Li Y (2007) Mater Sci Eng B 138:263. doi:10.1016/j.mseb.2007.01.023

    Article  CAS  Google Scholar 

  3. Ren S, He X, Qu X, Li Y (2008) J Alloys Compd 455:424. doi:10.1016/j.jallcom.2007.01.127

    Article  CAS  Google Scholar 

  4. Kosolapova TY (1971) Carbides properties, production and applications. Plenum, New York

    Google Scholar 

  5. Park JK, Lucas JP (1997) Scr Mater 37:511. doi:10.1016/S1359-6462(97)00133-4

    Article  CAS  Google Scholar 

  6. Pech-Canul MI, Katz RN, Makhlouf MM (2000) J Mater Process Technol 108:68. doi:10.1016/S0924-0136(00)00664-6

    Article  CAS  Google Scholar 

  7. Aguilar-Martínez JA, Pech-Canul MI, Rodriguez-Reyes M, De la Peña JL (2003) Mater Lett 57:4332. doi:10.1016/S0167-577X(03)00323-9

    Article  Google Scholar 

  8. Pech-Canul MI, Katz RN, Makhlouf MM (2000) Metall Mater Trans A 31A:265

    Google Scholar 

  9. Pech-Canul MI, Ortega-Celaya F, Pech-Canul MA (2006) Mech Compos Mater 42:283. doi:10.1007/s11029-006-0038-z

    Article  CAS  Google Scholar 

  10. Pech-Canul MI, Escalera-Lozano R, Pech-Canul MA, Rendon-Angeles JC, Lopez-Cuevas J (2007) Mater Corros 58:833. doi:10.1002/maco.200704067

    Article  CAS  Google Scholar 

  11. Foley RT (1986) Corrosion 42:277

    CAS  Google Scholar 

  12. Frankel GS (1998) J Electrochem Soc 145:2186. doi:10.1149/1.1838615

    Article  CAS  Google Scholar 

  13. Szlarska-Smialowska Z (1999) Corros Sci 41:1743. doi:10.1016/S0010-938X(99)00012-8

    Article  Google Scholar 

  14. Suter T, Böhni H (1998) Electrochim Acta 43:2843. doi:10.1016/S0013-4686(98)00025-5

    Article  CAS  Google Scholar 

  15. Suter T, Alkire RC (2001) J Electrochem Soc 148:B36. doi:10.1149/1.1344530

    Article  CAS  Google Scholar 

  16. Birbilis N, Buchheit RG (2005) J Electrochem Soc 152:B140. doi:10.1149/1.1869984

    Article  CAS  Google Scholar 

  17. Birbilis N, Buchheit RG (2008) J Electrochem Soc 155:C117. doi:10.1149/1.2829897

    Article  CAS  Google Scholar 

  18. Wloka J, Bürklin G, Virtanen S (2007) Electrochim Acta 53:2055. doi:10.1016/j.electacta.2007.09.004

    Article  CAS  Google Scholar 

  19. Wloka J, Virtanen S (2008) Surf Interface Anal 40:1219. doi:10.1002/sia.2868

    Article  CAS  Google Scholar 

  20. Yasakau KA, Zheludkevich ML, Lamaka SV, Ferreira MGS (2007) Electrochim Acta 52:7651. doi:10.1016/j.electacta.2006.12.072

    Article  CAS  Google Scholar 

  21. Davoodi A, Pan J, Leygraf C, Norgren S (2006) Appl Surf Sci 252:5499. doi:10.1016/j.apsusc.2005.12.023

    Article  CAS  Google Scholar 

  22. Davoodi A, Pan J, Leygraf C, Norgren S (2007) Electrochim Acta 52:7697. doi:10.1016/j.electacta.2006.12.073

    Article  CAS  Google Scholar 

  23. Schmutz P, Frankel GS (1998) J Electrochem Soc 145:2285. doi:10.1149/1.1838633

    Article  CAS  Google Scholar 

  24. De Wit JHW (2004) Electrochim Acta 49:284

    Google Scholar 

  25. Büchler M, Kerimo J, Guillaume F, Smyrl WH (2000) J Electrochem Soc 147:3641. doi:10.1149/1.1393960

    Article  Google Scholar 

  26. Elboujdaini M, Ghali E, Barradas MG, Girgis M (1995) J Appl Electrochem 25:412. doi:10.1007/BF00249662

    Article  CAS  Google Scholar 

  27. Claycomb GD, Sherwood PMA (2002) J Vac Sci Technol A 20:1230. doi:10.1116/1.1479357

    Article  CAS  Google Scholar 

  28. Rehim SSA, Hassan HH, Amin MA (2004) Corros Sci 46:1921. doi:10.1016/j.corsci.2003.10.016

    Article  Google Scholar 

  29. McCafferty E (2003) Corros Sci 45:301. doi:10.1016/S0010-938X(02)00095-1

    Article  Google Scholar 

  30. Wang QG, Davidson CJ (2001) J Mater Sci 36:739. doi:10.1023/A:1004801327556

    Article  CAS  Google Scholar 

  31. Liu YL, Kang SB, Kim HW (1999) Mater Lett 41:267. doi:10.1016/S0167-577X(99)00141-X

    Article  CAS  Google Scholar 

  32. Yang CY, Lee SL, Lee CK, Lin JC (2005) Mater Chem Phys 93:412. doi:10.1016/j.matchemphys.2005.03.029

    Article  CAS  Google Scholar 

  33. Pech-Canul MA, Pech-Canul MI, Echeverría M, Montoya-Dávila M (2007) ECS Trans 3:557. doi:10.1149/1.2789257

    Article  CAS  Google Scholar 

  34. Pech-Canul MA, Pech-Canul MI, Echeverría M (2007) XXII National Congress of the Mexican Electrochemical Society. Pachuca, México, Paper smeq50

  35. Amin MA, Hassan HH, Hazzazi OA, Qhatani MM (2008) J Appl Electrochem 38:1589. doi:10.1007/s10800-008-9600-9

    Article  CAS  Google Scholar 

  36. Lohrengel MM (1995) Ionics 1:393. doi:10.1007/BF02375282

    Article  CAS  Google Scholar 

  37. Gudić S, Radošević J, Kliškić M (1996) J Appl Electrochem 26:1027. doi:10.1007/BF00242197

    Article  Google Scholar 

  38. Kowk RMW (2000) XPSPEAK Version 4.1 XPS peak fitting program. Available at http://www.phy.cuhk.edu.hk/~surface/XPSPEAK

  39. Rotole JA, Sherwood PMA (1999) J Vac Sci Technol A 17:1091. doi:10.1116/1.581779

    Article  CAS  Google Scholar 

  40. Alexander MR, Thompson GE, Beamson G (2000) Surf Interface Anal 29:468. doi:10.1002/1096-9918(200007)29:7<468::AID-SIA890>3.0.CO;2-V

    Article  CAS  Google Scholar 

  41. Mirji SA (2006) Surf Interface Anal 38:158. doi:10.1002/sia.2309

    Article  CAS  Google Scholar 

  42. Matsutani T, Asanuma T, Liu C, Kiuchi M, Takeuchi T (2004) Surf Coat Technol 177–178:365. doi:10.1016/j.surfcoat.2003.09.028

    Article  Google Scholar 

  43. Green ML, Gusev EP, Degreve R, Garfunkel EL (2001) J Appl Phys 90:2057. doi:10.1063/1.1385803

    Article  CAS  Google Scholar 

  44. Kim KJ, Park KT, Lee JW (2006) Thin Solid Films 500:356. doi:10.1016/j.tsf.2005.11.042

    Article  Google Scholar 

  45. Jeong SH, Kim JK, Kim BS, Shim SH, Lee BT (2004) Vacuum 76:507. doi:10.1016/j.vacuum.2004.06.003

    Article  CAS  Google Scholar 

  46. Szlarska-Smialowska Z (2002) Corros Sci 44:1143. doi:10.1016/S0010-938X(01)00113-5

    Article  Google Scholar 

  47. Schultze JW, Lohrengel MM (2000) Electrochim Acta 45:2499. doi:10.1016/S0013-4686(00)00347-9

    Article  CAS  Google Scholar 

  48. Bockris JOM, Kang Y (1997) J Solid State Electrochem 1:17. doi:10.1007/s100080050019

    Article  CAS  Google Scholar 

  49. Fernandes JCS, Picciochi R, Da Cunha Belo M, Moura e Silva T, Ferreira MGS, Fonseca ITE (2004) Electrochim Acta 49:4701. doi:10.1016/j.electacta.2004.05.025

    Article  CAS  Google Scholar 

  50. Zhang B, Li Y, Wang F (2007) Corros Sci 49:2071. doi:10.1016/j.corsci.2006.11.006

    Article  CAS  Google Scholar 

  51. Menezes S, Haak R, Hagen G, Kendig M (1989) J Electrochem Soc 136:184. doi:10.1149/1.2097069

    Article  Google Scholar 

  52. Morrison SR (1980) Electrochemistry at semiconductor and oxidized metal electrodes. Plenum, New York

    Google Scholar 

  53. Jun JH, Kim HJ, Choi DJ (2008) J Ceram Process Res 9:75

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Conacyt (National Council of Science and Technology, México) for the financial support under grant no. 51303.Y. E. Coral-Escobar is thankful to Universidad del Atlántico (Colombia) for granting the leave of absence to do doctoral research at Cinvestav-Mérida. The authors also thank Dr. P. Bartolo-Pérez for the useful discussions on surface analytical investigations and to Ms. Dora Huerta and W. Cauich for the technical assistance during the analysis by SEM and XPS, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Pech-Canul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coral-Escobar, E.E., Pech-Canul, M.A. & Pech-Canul, M.I. Electrochemical behavior of passive films on Al–17Si–14Mg (wt.%) alloy in near-neutral solutions. J Solid State Electrochem 14, 803–810 (2010). https://doi.org/10.1007/s10008-009-0853-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0853-y

Keywords

Navigation