Skip to main content
Log in

Microwave-assisted synthesis of organic–inorganic poly(3,4-ethylenedioxythiophene)/RuO2·xH2O nanocomposite for supercapacitor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

An organic–inorganic poly(3,4-ethylenedioxythiophene) (PEDOT)/RuO2·xH2O nanocomposite (approximately 1 wt.% RuO2) has been successfully prepared for the first time under microwave irradiation within 5 min with power 900 W via in situ chemical polymerization. The morphology and structure of the resultant material is characterized by transmission electron microscope and Fourier transform infrared. Moreover, the electrochemical properties of the synthesized nanocomposite can be controlled by adjusting the annealing temperature, which is definitely illustrated by cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectra. Electrochemical data have shown that the PEDOT/RuO2·xH2O nanocomposite annealed at 150 °C possesses the most favorable charge/discharge ability with a specific capacitance of 153.3 F g−1 at a current density of 150 mA g−1 and the high efficient utilization of PEDOT at various current densities. Furthermore, such composite has a less capacitance degradation of 23.8% after 1,000 continuous cycles. The improved electrochemical performance are mainly attributed to the large electroactive surface of nanocomposite and the existence of amorphous RuO2·xH2O particles as well as a synergistic effect of the polymer PEDOT and annealed RuO2·xH2O. Thus, the PEDOT/RuO2·xH2O nanocomposite annealed at 150 °C can act as a promising electroactive material for supercapacitor application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Reference

  1. Colvin VL, Schlamp MC, Alivisatos AP (1994) Nature 370:354. doi:10.1038/370354a0

    Article  CAS  Google Scholar 

  2. Arbizzani C, Mastragostino M, Meneghello L, Paraventi R (1996) Adv Mater 8:331. doi:10.1002/adma.19960080409

    Article  CAS  Google Scholar 

  3. Baraton MI, Merhara L, Wang J, Gonsalves KE (1998) Nanotechnology 9:356. doi:10.1088/0957-4484/9/4/010

    Article  CAS  Google Scholar 

  4. Rajesh B, Thambi KR, Bonard JM, Xanthapolous N, Mathieu HJ, Viswanathan B (2002) Electrochem Solid-State Lett 5:E71. doi:10.1149/1.1518610

    Article  CAS  Google Scholar 

  5. Mattes BR, Knobbe ET, Fuqua PD, Nishid F, Chang EW, Pierce BM, Dunn B, Karner RB (1991) Synth Met 43:3183. doi:10.1016/0379-6779(91)91262-9

    Article  CAS  Google Scholar 

  6. Rios EC, Rosario AV, Mello RM, Micaroni L (2007) J Power Sources 163:1137. doi:10.1016/j.jpowsour.2006.09.056

    Article  CAS  Google Scholar 

  7. Zhang L, Wang M (2003) J Phys Chem B 107:6748. doi:10.1021/jp034130g

    Article  CAS  Google Scholar 

  8. Zhang X, Lee JS, Lee GS, Cha DK, Moon JK, Yang DJ, Manohar SK (2006) Macromolecules 39:470. doi:10.1021/ma051975c

    Article  CAS  Google Scholar 

  9. Gustafsson JC, Liedberg B, Inganas O (1994) Solid State Ion 69:145. doi:10.1016/0167-2738(94)90403-0

    Article  CAS  Google Scholar 

  10. Chiu WW, Sejdic JT, Cooney RP, Bowmaker GA (2005) Synth Met 155:80. doi:10.1016/j.synthmet.2005.06.012

    Article  CAS  Google Scholar 

  11. Muruganand AV, Viswanath AK (2006) J Appl Phys 100:074319. doi:10.1063/1.2356788

    Article  CAS  Google Scholar 

  12. Liu R, Lee SB (2008) J Am Chem Soc 130:2942. doi:10.1021/ja7112382

    Article  CAS  Google Scholar 

  13. Wang YG, Zhang XG (2004) Electrochim Acta 49:1957. doi:10.1016/j.electacta.2003.12.023

    Article  CAS  Google Scholar 

  14. Panic V, Vidakovic T, Gojkovic S, Dekanski A, Milonjic S, Nikolic B (2003) Electrochim Acta 48:3805. doi:10.1016/S0013-4686(03)00514-0

    Article  CAS  Google Scholar 

  15. Trasatti S, Kurzweil P (1994) Platin Met Rev 46:38

    Google Scholar 

  16. Fang QL, Evans DA, Roberson SL, Zheng JP (2001) J Electrochem Soc 148:A833. doi:10.1149/1.1379739

    Article  CAS  Google Scholar 

  17. Hong JI, Yeo IH, Paika WK (2001) J Electrochem Soc 148:A156. doi:10.1149/1.1342166

    Article  CAS  Google Scholar 

  18. Huang LM, Wen TC, Gopalan A (2006) Electrochim Acta 51:3469. doi:10.1016/j.electacta.2005.09.049

    Article  CAS  Google Scholar 

  19. Han DX, Yang GF, Niu L, Ivaska A (2007) J Electroanal Chem 602:24. doi:10.1016/j.jelechem.2006.11.027

    Article  CAS  Google Scholar 

  20. Wang JC, Yu XF, Li YX, Liu Q (2007) J Phys Chem C 111:18073. doi:10.1021/jp0749468

    Article  CAS  Google Scholar 

  21. Hu CC, Liu MJ, Chang KH (2007) J Power Sources 163:1126. doi:10.1016/j.jpowsour.2006.09.060

    Article  CAS  Google Scholar 

  22. Chen WC, Hu CC (2004) J Power Sources 125:292. doi:10.1016/j.jpowsour.2003.08.001

    Article  CAS  Google Scholar 

  23. Liang YY, Li HL, Zhang XG (2007) J Power Sources 173:599. doi:10.1016/j.jpowsour.2007.08.010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Basic Research Program of China (973 Program no. 2007CB209703) and National Natural Science Foundation of China (nos. 20633040, 20873064), Graduate Innovation Plan of Jiangsu Province (CX07B-089Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., Yuan, C., Gao, B. et al. Microwave-assisted synthesis of organic–inorganic poly(3,4-ethylenedioxythiophene)/RuO2·xH2O nanocomposite for supercapacitor. J Solid State Electrochem 13, 1925–1933 (2009). https://doi.org/10.1007/s10008-008-0777-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0777-y

Keywords

Navigation