Skip to main content
Log in

A selective determination of norepinephrine on the glassy carbon electrode modified with poly(ethylenedioxypyrrole dicarboxylic acid) nanofibers

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A glassy carbon electrode modified with poly(3,4-ethylenedioxypyrrole-2,5-dicarboxylic acid) nanofibers (PEDOPA-NFs) was prepared for the determination of norepinephrine (NE) in phosphate buffer saline. The modified electrode demonstrated an improved sensitivity and selectivity toward the electrochemical detection of NE and could detect separately ascorbic acid (AA), uric acid (UA), and NE in their mixture. The separations of the oxidation peak potentials of NE–AA and NE–UA were 160 and 150 mV, respectively. Meanwhile, the modified electrode showed higher sensitivity and selectivity toward NE than dopamine and epinephrine. Using differential pulse voltammetry, the oxidation peak current of NE was found to be linearly dependent on its concentration within the range of 0.3–10 μM, and the detection limit of the NE oxidation current was 0.05 μM at a signal-to-noise ratio of 3. The PEDOPA-NFs promoted the electron transfer reaction of NE, while the PEDOPA-NFs, acting as a negatively charged linker, combined with the positively charged NE to induce NE accumulation in the NFs at pH under 7.4. However, the PEDOPA-NFs restrained the electrochemical response of the negatively charged AA and UA due to the electrostatic repulsion. The result indicates that the modified electrode can be used to determine NE without interference from AA and UA and selectively in the mixture of catecholamines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Guan CL, Ouyang J, Li QL, Liu BH, Baeyens WRG (2000) Talanta 50:1197 doi:10.1016/S0039-9140(99)00225-8

    Article  CAS  Google Scholar 

  2. Wang H, Jin H, Zhang HS (1999) Fresenius J Anal Chem 365:682 doi:10.1007/s002160051545

    Article  CAS  Google Scholar 

  3. Zhu M, Huang XM, Li J, Shen HX (1997) Anal Chim Acta 357:261 doi:10.1016/S0003-2670(97)00561-8

    Article  CAS  Google Scholar 

  4. Fang YZ, Jiang JC (1996) J Chin Anal Chem 24:1371

    CAS  Google Scholar 

  5. Moore TJ, Nam GG, Pipes LC, Coury LA Jr (1994) Anal Chem 66:3158 doi:10.1021/ac00091a026

    Article  CAS  Google Scholar 

  6. Selvaraju T, Ramaraj R (2003) Electrochem Commun 5:667 doi:10.1016/S1388-2481(03)00151-6

    Article  CAS  Google Scholar 

  7. Milczarek G, Ciszewski A (2004) Electroanalysis 16:1977 doi:10.1002/elan.200303044

    Article  CAS  Google Scholar 

  8. Roy PR, Okajima T, Ohsaka T (2003) Bioelectrochemistry 59:11 doi:10.1016/S1567-5394(02)00156-1

    Article  CAS  Google Scholar 

  9. Xu GR, Chang HY, Cho H, Meng W, Kang IK, Bae ZU (2004) Electrochim Acta 49:4069 doi:10.1016/j.electacta.2004.03.033

    Article  CAS  Google Scholar 

  10. Wang L, Huang PF, Wang HJ, Bai JY, Zhang LY, Zhao YQ (2007) Anna Di Chim 97:395 doi:10.1002/adic.200790024

    Article  Google Scholar 

  11. Ye BX, Xia P, Lin L (2000) Microchem J 64:125 doi:10.1016/S0026-265X(99)00004-1

    Article  Google Scholar 

  12. Zhao H, Zhang Y, Yuan Z (2002) Anal Chim Acta 454:75 doi:10.1016/S0003-2670(01)01543-4

    Article  CAS  Google Scholar 

  13. Zhao H, Zhang Y, Yuan Z (2002) Electroanalysis 14:445 doi:10.1002/1521-4109(200203)14:6<445::AID-ELAN445>3.0.CO;2-X

    Article  CAS  Google Scholar 

  14. Wang Q, Li N (2001) Talanta 55:1219 doi:10.1016/S0039-9140(01)00535-5

    Article  CAS  Google Scholar 

  15. Zen JM, Kumar AS, Chen JC (2001) Electroanalysis 13:457 doi:10.1002/1521-4109(200104)13:6<457::AID-ELAN457>3.0.CO;2-M

    Article  CAS  Google Scholar 

  16. Wang J, Li M, Shi Z, Li N, Gu Z (2002) Electroanalysis 14:225 doi:10.1002/1521-4109(200202)14:3<225::AID-ELAN225>3.0.CO;2-I

    Article  CAS  Google Scholar 

  17. Du J, Lv G, Hu C, Wu H (2007) Ann Chim 97:313 doi:10.1002/adic.200790017

    Article  CAS  Google Scholar 

  18. Chen SM, Liu MI (2005) J Electroanal Chem 579:153 doi:10.1016/j.jelechem.2005.02.005

    Article  CAS  Google Scholar 

  19. Bedioui F, Devynck J, Bied-Charreton C (1995) Acc Chem Res 28:30 doi:10.1021/ar00049a005

    Article  CAS  Google Scholar 

  20. Trevin S, Bedioui F, Devynck J (1996) J Electroanal Chem 408:261 doi:10.1016/0022-0728(96)04540-8

    Article  Google Scholar 

  21. Yao H, Sun Y, Lin X, Tang Y, Huang L (2007) Ann Chim 97:1217 doi:10.1002/adic.200790107

    Article  CAS  Google Scholar 

  22. Wang C, Wang G, Jiao S, Guo Z, Fang B (2007) Ann Chim 97:331 doi:10.1002/adic.200790019

    Article  CAS  Google Scholar 

  23. Zhao H, Zhang YZ, Yuan ZB (2001) Anal Chim Acta 441:117 doi:10.1016/S0003-2670(01)01086-8

    Article  CAS  Google Scholar 

  24. Milczarek G, Ciszewski A (2001) Electroanalysis 13:164 doi:10.1002/1521-4109(200102)13:2<164::AID-ELAN164>3.0.CO;2-F

    Article  CAS  Google Scholar 

  25. Jeong H, Kim H, Jeon S (2004) Microchem J 78:181 doi:10.1016/j.microc.2004.04.005

    Article  CAS  Google Scholar 

  26. Liu AL, Zhang SB, Chen W, Lin XH, Xia XH (2008) Biosens Bioelectron 23:1488 doi:10.1016/j.bios.2008.01.001

    Article  CAS  Google Scholar 

  27. Zhang YJ, Li J, Shen YF, Wang MJ, Li JH (2004) J Phys Chem B 108:15343 doi:10.1021/jp0471094

    Article  CAS  Google Scholar 

  28. Salem AK, Chen M, Hayden J, Leong KW, Searson PC (2004) Nano Lett 4:1163 doi:10.1021/nl049462r

    Article  CAS  Google Scholar 

  29. Huang JX, Virji S, Weiller BH, Kaner RB (2003) J Am Chem Soc 125:314 doi:10.1021/ja028371y

    Article  CAS  Google Scholar 

  30. Xu DS, Yu YX, Zheng M, Guo GL, Tang YQ (2003) Electrochem Commun 5:673 doi:10.1016/S1388-2481(03)00149-8

    Article  CAS  Google Scholar 

  31. Granot E, Katz E, Basnar B, Willner I (2005) Chem Mater 17:4600 doi:10.1021/cm050193v

    Article  CAS  Google Scholar 

  32. Zhi LJ, Gorelik T, Wu JS, Kolb U, Mullen K (2005) J Am Chem Soc 127:12792 doi:10.1021/ja054263a

    Article  CAS  Google Scholar 

  33. Piao YZ, Lim HC, Chang JY, Lee WY, Kim HS (2005) Electrochim Acta 50:2997 doi:10.1016/j.electacta.2004.12.043

    Article  CAS  Google Scholar 

  34. Jin KW, Yao BD, Wang N (2005) Chem Phys Lett 409:172 doi:10.1016/j.cplett.2005.05.002

    Article  CAS  Google Scholar 

  35. Hou SF, Harrell CC, Trofin L, Kohli P, Martin CR (2004) J Am Chem Soc 126:5674 doi:10.1021/ja049537t

    Article  CAS  Google Scholar 

  36. Chu SZ, Inoue S, Wada K, Kurashima K (2004) J Phys Chem B 108:5582 doi:10.1021/jp0378642

    Article  CAS  Google Scholar 

  37. Yuan JH, Wang K, Xia XH (2005) Adv Funct Mater 15:803 doi:10.1002/adfm.200400321

    Article  CAS  Google Scholar 

  38. Chen W, Xia XH (2007) ChemPhysChem 8:1009 doi:10.1002/cphc.200600711

    Article  CAS  Google Scholar 

  39. Chen W, Xia XH (2007) Adv Funct Mater 17:2943 doi:10.1002/adfm.200700015

    Article  CAS  Google Scholar 

  40. Broncová G, Shishkanova TV, Matějka P, Volf R, Král V (2004) Anal Chim Acta 511:197 doi:10.1016/j.aca.2004.01.052

    Article  CAS  Google Scholar 

  41. Chen CX, Gao YH (2007) Electrochim Acta 52:3143 doi:10.1016/j.electacta.2006.09.056

    Article  CAS  Google Scholar 

  42. Xian YZ, Wang HT, Zhou YY, Pan DM, Liu F, Jin LT (2004) Electrochem Commun 6:1270 doi:10.1016/j.elecom.2004.10.003

    Article  CAS  Google Scholar 

  43. Yang CM, Yi JL, Tang XJ, Zhou GZ, Zeng Y (2006) React Funct Polym 66:1336 doi:10.1016/j.reactfunctpolym.2006.03.015

    Article  CAS  Google Scholar 

  44. Liang HP, Guo YG, Hu JS, Zhu CF, Wan LJ, Bai CL (2005) Inorg Chem 44:3013 doi:10.1021/ic0500917

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Research Foundation Grant funded by Chonnam National University (2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seungwon Jeon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seol, H., Jeong, H. & Jeon, S. A selective determination of norepinephrine on the glassy carbon electrode modified with poly(ethylenedioxypyrrole dicarboxylic acid) nanofibers. J Solid State Electrochem 13, 1881–1887 (2009). https://doi.org/10.1007/s10008-008-0766-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0766-1

Keywords

Navigation