Skip to main content
Log in

Behavior of acid species during heat treatment and re-anodizing of porous alumina films formed in malonic acid

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In the present work infrared spectroscopy, photoluminescence spectral measurements and the potenthiodynamic technique for studying the effect of treatment temperature on compositional and electronic properties of malonic acid alumina films were used. In the course of our studies, it has been proven that heat treatment of malonic acid films at temperatures from 250 up to 400 °C leads to considerable changes in the photoluminescence properties and voltammetric response during their potentiodynamic re-anodizing. We suggest that defects, such as electron traps, in this type of porous anodic films are caused by the atoms of hydrogen (one or two) escaping from the CH2 groups of the malonic acid species as a result of the heat treatment. The sites of such defects provide pathways for easy electron migration under a high electric field increasing electroconductivity of anodic alumina films. On the contrary, no structural defects responsible for enhanced electroconductivity are observed during thermal splitting of oxalate groups in the oxalic acid alumina films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. O’ Sullivan JP, Wood GC (1970) Proc R Soc Lond 317:511

    Article  Google Scholar 

  2. Masuda H, Hasegawa F, Ono S (1997) J Electrochem Soc 144:L127. doi:10.1149/1.1837634

    Article  CAS  Google Scholar 

  3. Shingubara S, Morimoto K, Sakaue H, Takahagi T (2004) Electrochem Solid-State Lett 7(3):E15. doi:10.1149/1.1644353

    Article  CAS  Google Scholar 

  4. Kape JM (1959) Metallurgia 60:181

    CAS  Google Scholar 

  5. Ono S, Saito M, Asoh H (2005) Electrochim Acta 51:827. doi:10.1016/j.electacta.2005.05.058

    Article  CAS  Google Scholar 

  6. Lee W, Nielsch K, Gösele U (2007) Nanotechnology 18:475713. doi:10.1088/0957-4484/18/47/475713

    Article  CAS  Google Scholar 

  7. Tajima S, Baba N, Shimizu K, Mizuki I (1976) Electrocomp Sci Technol 3:91

    CAS  Google Scholar 

  8. Wood GC, Skeldon P, Thompson GE, Shimizu K (1996) J Electrochem Soc 143:74. doi:10.1149/1.1836389

    Article  CAS  Google Scholar 

  9. Shimizu K (1978) Electrochim Acta 23:295. doi:10.1016/0013-4686(78)80064-4

    Article  CAS  Google Scholar 

  10. Tajima S (1977) Electrochim Acta 22:995. doi:10.1016/0013-4686(77)85011-1

    Article  CAS  Google Scholar 

  11. Garcia-Vergara SJ, Skeldon P, Thompson GE, Habazaki H (2007) Appl Surf Sci 254:1534. doi:10.1016/j.apsusc.2007.07.006

    Article  CAS  Google Scholar 

  12. Yamamoto Y, Baba N (1983) Thin Solid Films 101(4):329. doi:10.1016/0040-6090(83)90099-8

    Article  CAS  Google Scholar 

  13. Fukuda Y, Fukushima F (1980) Bull Chem Soc Jpn 63:3125. doi:10.1246/bcsj.53.3125

    Article  Google Scholar 

  14. Jovanić B, Zeković LJ, Urośević V, Radenković B (1989) Electrochim Acta 34(12):1707. doi:10.1016/0013-4686(89)85052-2

    Article  Google Scholar 

  15. Vrublevsky I, Parkoun V, Sokol V, Schreckenbach J (2004) Appl Surf Sci 236:270. doi:10.1016/j.apsusc.2004.04.030

    Article  CAS  Google Scholar 

  16. Schmidlin FW (1966) J Appl Phys 37:2823. doi:10.1063/1.1782131

    Article  CAS  Google Scholar 

  17. Joachim C, Ratner MA (2004) Nanotechnology 15:1065. doi:10.1088/0957-4484/15/8/036

    Article  CAS  Google Scholar 

  18. Strehlow WH, Cook FL (1973) J Phys Chem Ref Data 2:163

    Article  CAS  Google Scholar 

  19. Jagminas A, Vrublevsky I, Kuzmarskyte J, Jasulaitiene V (2008) Acta Mater 56:1390. doi:10.1016/j.actamat.2007.11.029

    Article  CAS  Google Scholar 

  20. Xu WL, Zheng MJ, Wu S, Shen WZ (2004) Appl Phys Lett 85:4364. doi:10.1063/1.1815072

    Article  CAS  Google Scholar 

  21. Nakamoto K (1986) Infrared and raman spectra of inorganic and coordination compounds, 4th edn. Wiley, New York

    Google Scholar 

  22. Heilmann A, Jutzi P, Klipp A, Kreibig U, Neuendorf R, Sawitowski T, Schmid G (1998) Adv Mater 5:10

    Google Scholar 

  23. Xu WL, Zheng MJ, Wu S, Shen WZ (2004) Appl Phys Lett 85:4364. doi:10.1063/1.1815072

    Article  CAS  Google Scholar 

  24. Vrublevsky I, Parkoun V, Schreckenbach J, Marx G (2004) Appl Surf Sci 227:282. doi:10.1016/j.apsusc.2003.12.003

    Article  CAS  Google Scholar 

  25. Vrublevsky I, Parkoun V, Schreckenbach J (2005) Appl Surf Sci 242:333. doi:10.1016/j.apsusc.2004.08.034

    Article  CAS  Google Scholar 

  26. Snipes W, Schmidt J (1966) Radiat Res 29:194. doi:10.2307/3572005

    Article  CAS  Google Scholar 

  27. Gao T, Meng GW, Zhang LD (2003) J Phys Condens Matter 15:2071. doi:10.1088/0953-8984/15/12/324

    Article  CAS  Google Scholar 

  28. Vrublevsky I, Jagminas A, Hemeltjen S, Goedel WA (2008) Appl Surf Sci 254:7326. doi:10.1016/j.apsusc.2008.05.326

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Deutsche Forschungsgemeinschaft (Germany) for the support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Vrublevsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vrublevsky, I., Jagminas, A., Hemeltjen, S. et al. Behavior of acid species during heat treatment and re-anodizing of porous alumina films formed in malonic acid. J Solid State Electrochem 13, 1873–1880 (2009). https://doi.org/10.1007/s10008-008-0765-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0765-2

Keywords

Navigation