Skip to main content
Log in

Electrocatalytic oxidation of methanol on carbon ceramic electrode modified by platinum nanoparticles incorporated in poly (o-phenylenediamine) film

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Carbon ceramic electrode, a new electrode substrate, was prepared by sol–gel procedure and used for the electropolymerization of o-phenylenediamine and incorporation of platinum nanoparticles into the resulting poly(o-phenylenediamine) (PoPD) film. The modified electrode was used for electrooxidation of methanol in 0.3 M H2SO4 as supporting electrolyte. The presence of PoPD film increased considerably the efficiency of deposited Pt nanoparticles toward the electrocatalytic oxidation of methanol. The effective parameters on the electrooxidation of methanol, i.e., amounts of polymer and Pt catalyst, medium temperature, working potential limit in anodic direction, and potential scan rate, were investigated, and the results were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wasmus S, Kuver A (1999) J Electroanal Chem 461:14. doi:10.1016/S0022-0728(98)00197-1

    Article  CAS  Google Scholar 

  2. Ren XM, Zelenay P, Thomas S, Davey J, Gottesfeld S (2000) J Power Sources 86:11. doi:10.1016/S0378-7753(99)00407-3

    Article  Google Scholar 

  3. Steele BCH, Heinzel A (2001) Nature 414:345. doi:10.1038/35104620

    Article  CAS  Google Scholar 

  4. Ribeiro J, Dos Anjos DM, Kokoh KB, Coutanceau C, Léger JM, Olivi P, De Andrade AR, Tremiliosi-Filho G (2007) Electrochim Acta 52:6997. doi:10.1016/j.electacta.2007.05.017

    Article  CAS  Google Scholar 

  5. Wang ZB, Yin GP, Lin YG (2007) J Power Sources 170:242. doi:10.1016/j.jpowsour.2007.03.078

    Article  CAS  Google Scholar 

  6. Li H, Sun G, Cao L, Jiang L, Xin Q (2007) Electrochim Acta 52:6622, doi:10.1016/j.electacta.2007.04.056

    Article  CAS  Google Scholar 

  7. Wang H, Jusys Z, Behm RJ (2006) J Power Sources 154:351. doi:10.1016/j.jpowsour.2005.10.034

    Article  CAS  Google Scholar 

  8. Léger JM, Rousseau S, Coutanceau C, Hahn F, Lamy C (2005) Electrochim Acta 50:5118. doi:10.1016/j.electacta.2005.01.051

    Article  CAS  Google Scholar 

  9. Santhosh P, Gopalan A, Vasudevan T, Lee KP (2006) Appl Surf Sci 252:7964. doi:10.1016/j.apsusc.2005.10.002

    Article  CAS  Google Scholar 

  10. Golabi SM, Nozad A (2002) J Electroanal Chem 521:161. doi:10.1016/S0022-0728(02)00656-3

    Article  CAS  Google Scholar 

  11. Niu L, Li Q, Wei F, Wu S, Liu P, Cao X (2005) J Electroanal Chem 578:331. doi:10.1016/j.jelechem.2005.01.014

    Article  CAS  Google Scholar 

  12. Lenoe A, Marino W, Scharifker BR (1992) J Electrochem Soc 139:438. doi:10.1149/1.2069236

    Article  Google Scholar 

  13. Zhong Q, Xiong L, Zhong Z, Li W (1996) Acta Physchim Sin 12:351

    Google Scholar 

  14. Mikhaylova AA, Molodkina EB, Khazova OA, Bagotzky VS (2001) J Electroanal Chem 509:119. doi:10.1016/S0022-0728(01)00479-X

    Article  CAS  Google Scholar 

  15. Castro Luna AM (2000) J Appl Electrochem 30:1137. doi:10.1023/A:1004050922065

    Article  Google Scholar 

  16. Rajendra Prasad K, Munichandraiah N (2002) J Power Sources 103:300. doi:10.1016/S0378-7753(01)00841-2

    Article  CAS  Google Scholar 

  17. Niu L, Li Q, Wei F, Chen X, Wang H (2003) J Electroanal Chem 544:121. doi:10.1016/S0022-0728(03)00085-8

    Article  CAS  Google Scholar 

  18. Bouzek K, Mangold KM, Jüttner K (2001) J Appl Electrochem 31:501. doi:10.1023/A:1017527114207

    Article  CAS  Google Scholar 

  19. Hammache H, Makhloufi L, Saidani B (2001) Synth Met 123:515. doi:10.1016/S0379-6779(01)00345-9

    Article  CAS  Google Scholar 

  20. Biallozor S, Kupniewska A, Jasulaitene V (2003) Fuel Cells (Weinh) 3:8. doi:10.1002/fuce.200320242

    Article  CAS  Google Scholar 

  21. Yassar A, Roncali J, Garnier F (1988) J Electroanal Chem 225:53. doi:10.1016/0022-0728(88)80004-4

    Article  Google Scholar 

  22. Swathirajan S, Mikhail YM (1992) J Electrochem Soc 139:2105. doi:10.1149/1.2221186

    Article  CAS  Google Scholar 

  23. Golikand AN, Golabi SM, Ghannadi Maragheh M, Irannejad L (2005) J Power Sources 145:116. doi:10.1016/j.jpowsour.2005.02.061

    Article  CAS  Google Scholar 

  24. Pournaghi-Azar MH, Habibi B (2007) J Electroanal Chem 601:53. doi:10.1016/j.jelechem.2006.10.027

    Article  CAS  Google Scholar 

  25. Lei CX, Yang Y, Wang H, Shen GL, Yu RQ (2004) Anal Chim Acta 513:379. doi:10.1016/j.aca.2004.01.029

    Article  CAS  Google Scholar 

  26. Oskam G, Searson PC (1998) J Phys Chem B 102:2464. doi:10.1021/jp972313v

    Article  CAS  Google Scholar 

  27. Yang XH, Hua L, Gong HQ, Tan SN (2003) Anal Chim Acta 478:67. doi:10.1016/S0003-2670(02)01507-6

    Article  CAS  Google Scholar 

  28. Shankaran DR, Uehera N, Kato T (2002) Anal Bioanal Chem 374:412. doi:10.1007/s00216-002-1507-4

    Article  CAS  Google Scholar 

  29. Razmi H, Habibi E, Heidari H (2008) Electrochim Acta 53:8178. doi:10.1016/j.electacta.2008.06.033

    Article  CAS  Google Scholar 

  30. Nichols RJ, Bewick A (1988) J Electroanal Chem 243:445. doi:10.1016/0022-0728(88)80047-0

    Article  CAS  Google Scholar 

  31. Ren B, Xu X, Li XQ, Cai WB, Tian ZQ (1999) Surf Sci 427:157. doi:10.1016/S0039-6028(99)00257-5

    Article  Google Scholar 

  32. Pournaghi-Azar MH, Habibi B (2005) J Electroanal Chem 580:23. doi:10.1016/j.jelechem.2005.02.021

    Article  CAS  Google Scholar 

  33. Noazd Golikand A, Ghannadi Maragheh M, Sedaghat Sherehjini S, Taghi-Ganji KM, Yari M (2006) Electroanalysis 18:911. doi:10.1002/elan.200503476

    Article  CAS  Google Scholar 

  34. Vigier F, Gloaguen F, Léger JM, Lamy C (2001) Electrochim Acta 46:4331. doi:10.1016/S0013-4686(01)00680-6

    Article  CAS  Google Scholar 

  35. Ross P, Markovic N (2000) CATTECH 4:110. doi:10.1023/A:1011963731898

    Article  Google Scholar 

  36. Li WS, Tian LP, Huang QM, Li H, Chen HY, Lian XP (2002) J Power Sources 104:281. doi:10.1016/S0378-7753(01)00961-2

    Article  CAS  Google Scholar 

  37. Manohara R, Goodenough JB (1992) J Mater Chem 2:875. doi:10.1039/jm9920200875

    Article  Google Scholar 

  38. Kulesza PJ, Matczak M, Wieckowski A (1999) Electrochim Acta 44:2131. doi:10.1016/S0013-4686(98)00321-1

    Article  CAS  Google Scholar 

  39. Xue KH, Cai CX, Yang H, Sun SG (1998) J Power Sources 75:207. doi:10.1016/S0378-7753(98)00098-6

    Article  CAS  Google Scholar 

  40. Bard AJ, Faulkner LR (2001) Electrochemical methods. Wiley, New York, p 226

    Google Scholar 

  41. Lee CG, Umeda M, Uchida I (2006) J Power Sources 160:78. doi:10.1016/j.jpowsour.2006.01.068

    Article  CAS  Google Scholar 

  42. Pournaghi-Azar MH, Habibi B (2007) J Electroanal Chem 605:136. doi:10.1016/j.jelechem.2007.03.025

    Article  CAS  Google Scholar 

  43. Kabbabi A, Faure R, Durand R, Beden B, Hahn F, Léger JM, Lamy C (1998) J Electroanal Chem 444:41. doi:10.1016/S0022-0728(97)00558-5

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to the research office of Azarbaijan University of Tarbiat Moallem for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Razmi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Razmi, H., Habibi, E. Electrocatalytic oxidation of methanol on carbon ceramic electrode modified by platinum nanoparticles incorporated in poly (o-phenylenediamine) film. J Solid State Electrochem 13, 1897–1904 (2009). https://doi.org/10.1007/s10008-008-0746-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0746-5

Keywords

Navigation