Skip to main content
Log in

Enhanced graphite passivation in Li-ion battery electrolytes containing disiloxane-type additive/co-solvent

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This article reports the synthesis details and film-forming properties of 1,1,3,3-tetramethyl-1,3-bis(3-(ω-hexadecyloxy-deca(ethylenoxy)propyl)disiloxane, a new potential electrolyte additive/functional co-solvent for propylene carbonate (PC)-based Li-ion cells with graphitic anodes. Galvanostatic charge/discharge characteristics and scanning electron microscopy images provide direct evidence for the suppression of solvent intercalation and graphite exfoliation in the presence of the additive. In terms of irreversible capacity, the additive’s efficiency is the highest for 15% weight ratio in the solvent mixture. Potentiodynamic measurements have revealed that disiloxane component undergoes irreversible reduction at potential significantly higher then PC decomposition. Energy dispersive spectroscopy analysis of graphite flake surfaces confirm that silicon species from the disiloxane decomposition are built in the passive layer. The reported compound may be considered as a basis for alternative cost-effective electrolyte compositions for low-temperature applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang SS (2006) J Power Sources 162:1379 doi:10.1016/j.jpowsour.2006.07.074

    Article  CAS  Google Scholar 

  2. Dey AN, Sullivan BP (1970) J Electrochem Soc 117:222 doi:10.1149/1.2407470

    Article  CAS  Google Scholar 

  3. Wagner MR, Raimann P, Möller KC, Besenhard JO, Winter M (2004) Electrochem Solid-State Lett 7:A201 doi:10.1149/1.1739312

    Article  CAS  Google Scholar 

  4. Buqa H, Würsig A, Vetter J, Spahr ME, Krumeich F, Novak P (2006) J Power Sources 153:385 doi:10.1016/j.jpowsour.2005.05.036

    Article  CAS  Google Scholar 

  5. Gao J, Fu LJ, Zhang HP, Yang LC, Wu YP (2008) Electrochim Acta 53:2376 doi:10.1016/j.electacta.2007.09.058

    Article  CAS  Google Scholar 

  6. Fu LJ, Gao J, Zhang T, Cao Q, Yang LC, Wu YP, Holze R (2007) J Power Sources 171:904 doi:10.1016/j.jpowsour.2007.05.099

    Article  CAS  Google Scholar 

  7. Gao J, Zhang HP, Zhang T, Wu YP, Holze R (2007) Solid State Ion 178:1225 doi:10.1016/j.ssi.2007.06.004

    Article  CAS  Google Scholar 

  8. Gao J, Zhang HP, Fu LJ, Zhang T, Wu YP, Takamura T, Wu HQ, Holze R (2007) Electrochim Acta 52:5417 doi:10.1016/j.electacta.2007.02.064

    Article  CAS  Google Scholar 

  9. Schroeder G, Gierczyk B, Waszak D, Kopczyk M, Walkowiak M (2006) Electrochem Commun 8:523 doi:10.1016/j.elecom.2006.01.021

    Article  CAS  Google Scholar 

  10. Schroeder G, Gierczyk B, Waszak D, Walkowiak M (2006) Electrochem Commun 8:1583 doi:10.1016/j.elecom.2006.07.030

    Article  CAS  Google Scholar 

  11. Xia Q, Wang B, Wu YP, Luo HJ, van Ree T (2008) J Power Sources 180:602 doi:10.1016/j.jpowsour.2008.01.039

    Article  CAS  Google Scholar 

  12. Walkowiak M, Waszak D, Schroeder G, Gierczyk B (2008) Electrochem Commun doi:10.1016/j.elecom.2008.08.036

  13. Walkowiak M, Waszak D, Gierczyk B, Schroeder G (2008) Cent Eur J Chem doi:10.2478/s11532-008-0058-8

  14. Korepp C, Kern W, Lanzer EA, Raimann PR, Besenhard JO, Yang M, Möller K-C, Shieh D-T, Winter M (2007) J Power Sources 174:628 doi:10.1016/j.jpowsour.2007.06.140

    Article  CAS  Google Scholar 

  15. Korepp C, Kern W, Lanzer EA, Raimann PR, Besenhard JO, Yang M, Möller K-C, Shieh D-T, Winter M (2007) J Power Sources 174:387 doi:10.1016/j.jpowsour.2007.06.141

    Article  CAS  Google Scholar 

  16. Korepp C, Santner HJ, Fujii T, Ue M, Besenhard JO, Möller K-C, Winter M (2006) J Power Sources 158:578 doi:10.1016/j.jpowsour.2005.09.021

    Article  CAS  Google Scholar 

  17. Zhang SS (2006) J Power Sources 163:567 doi:10.1016/j.jpowsour.2006.09.046

    Article  CAS  Google Scholar 

  18. Kim W-S, Park D-W, Jung H-J, Choi Y-K (2006) Bull Korean Chem Soc 27:82

    Article  Google Scholar 

  19. Xu MQ, Li WS, Zuo XX, Liu JS, Xu X (2007) J Power Sources 174:705 doi:10.1016/j.jpowsour.2007.06.112

    Article  CAS  Google Scholar 

  20. Chen R, Wu F, Li L, Gyan Y, Qiu X, Chen S, Li Y, Wu S (2007) J Power Sources 172:395 doi:10.1016/j.jpowsour.2007.05.078

    Article  CAS  Google Scholar 

  21. Williamson A (1850) Philos Mag 37:350

    Google Scholar 

  22. Abe K, Yoshitake H (2004) Electrochemistry 72:519

    CAS  Google Scholar 

  23. Abe K, Miyoshi K, Hattori T, Ushigoe Y, Yoshitake H (2008) J Power Sources 184:449 doi:10.1016/j.jpowsour.2008.03.037

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work has been done in the frameworks of MNT-ERA-Net project NANOLION. Financial support from the Ministry of Science and Higher Education of Poland (grant no. ERA-NET MNT/93/22006) is gratefully acknowledged. The work was presented during the 9th International Conference “Advanced Batteries and Accumulators” (A.B.A.-9), Brno, Czech Republic, June 29–July 3, 2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Walkowiak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walkowiak, M., Waszak, D., Schroeder, G. et al. Enhanced graphite passivation in Li-ion battery electrolytes containing disiloxane-type additive/co-solvent. J Solid State Electrochem 14, 2213–2218 (2010). https://doi.org/10.1007/s10008-008-0710-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0710-4

Keywords

Navigation