Skip to main content
Log in

Comparison of structure and electrochemical properties for 5 V LiNi0.5Mn1.5O4 and LiNi0.4Cr0.2Mn1.4O4 cathode materials

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Spinel LiNi0.5Mn1.5O4 and LiMn1.4Cr0.2Ni0.4O4 cathode materials have been successfully synthesized by the sol–gel method using citric acid as a chelating agent. The structure and electrochemical performance of these as-prepared powders have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and the galvanostatic charge–discharge test in detail. XRD results show that there is a small Li y Ni1-y O impurity peak placed close to the (4 0 0) line of the spinel LiNi0.5Mn1.5O4, and LiMn1.4Cr0.2Ni0.4O4 has high phase purity, and the powders are well crystallized. SEM indicates that LiMn1.4Cr0.2Ni0.4O4 has a slightly smaller particle size and a more regular morphological structure with narrow size distribution than those of LiNi0.5Mn1.5O4. Galvanostatic charge–discharge testing indicates that the initial discharge capacities of LiMn1.4Cr0.2Ni0.4O4 and LiNi0.5Mn1.5O4 cycled at 0.15 C are 129.6 and 130.2 mAh g−1, respectively, and the capacity losses compared to the initial value, after 50 cycles, are 2.09% and 5.68%, respectively. LiMn1.4Cr0.2Ni0.4O4 cathode has a higher electrode coulombic efficiency than that of the LiNi0.5Mn1.5O4 cathode, implying that Ni and Cr dual substitution is beneficial to the reversible intercalation and de-intercalation of Li+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188 doi:10.1149/1.1837571

    Article  CAS  Google Scholar 

  2. Takahashi M, Tobishima S, Takei K, Sakurai Y (2002) Solid State Ionics 148:283 doi:10.1016/S0167-2738(02)00064-4

    Article  CAS  Google Scholar 

  3. Yi TF, Hu XG, Gao K (2006) J Power Sources 162:636 doi:10.1016/j.jpowsour.2006.07.019

    Article  CAS  Google Scholar 

  4. Dokko K, Anzue N, Mohamedi M, Itoh T, Uchida I (2004) Electrochem Commun 6:384 doi:10.1016/j.elecom.2004.02.005

    Article  CAS  Google Scholar 

  5. Zeng RH, Li WS, Lu DS, Huang QM (2007) J Power Sources 174:592 doi:10.1016/j.jpowsour.2007.06.120

    Article  CAS  Google Scholar 

  6. Yi TF, Zhu YR (2008) Electrochim Acta 53:3120 doi:10.1016/j.electacta.2007.11.062

    Article  CAS  Google Scholar 

  7. Taniguchi I, Bakenov Z (2005) Powder Technol 159:55 doi:10.1016/j.powtec.2005.07.002

    Article  CAS  Google Scholar 

  8. Xu HY, Xie S, Ding N, Liu BL, Shang Y, Chen CH (2006) Electrochim Acta 51:4352 doi:10.1016/j.electacta.2005.12.014

    Article  CAS  Google Scholar 

  9. Aurbach D, Markovsky B, Talyossef Y, Salitra G, Kim H-J, Choi S (2006) J Power Sources 162:780 doi:10.1016/j.jpowsour.2005.07.009

    Article  CAS  Google Scholar 

  10. Patoux S, Sannier L, Lignier H, Reynier Y, Bourbon C, Jouanneau S et al (2008) Electrochim Acta 53:4137

    Article  CAS  Google Scholar 

  11. Zhong Q, Bonakdarpour A, Zhong M, Gao Y, Dahn JR (1997) J Electrochem Soc 144:205 doi:10.1149/1.1837386

    Article  CAS  Google Scholar 

  12. Lee YS, Todorov YM, Konishi T, Yoshio M (2001) ITE Lett 1:1 doi:10.1086/324437

    Article  Google Scholar 

  13. Robertson AD, Howard WF Jr (1997) J Electrochem Soc 144:3505 doi:10.1149/1.1838041

    Article  CAS  Google Scholar 

  14. Sigala C, Verbaere A, Mansot JL, Guyomard D, Piffard Y, Tournoux M (1997) J Solid State Chem 132:372 doi:10.1006/jssc.1997.7476

    Article  CAS  Google Scholar 

  15. Fang H-S, Wang Z-X, Li X-H, Guo H-J, Peng W-J (2006) J Power Sources 153:174 doi:10.1016/j.jpowsour.2005.03.179

    Article  CAS  Google Scholar 

  16. Xu HY, Xie S, Ding N, Liu BL, Shang Y, Chen CH (2006) Electrochim Acta 51:4352 doi:10.1016/j.electacta.2005.12.014

    Article  CAS  Google Scholar 

  17. Myung S-T, Komaba S, Kumagai N, Yashiro H, Chung H-T, Cho T-H (2002) Electrochim Acta 47:2543 doi:10.1016/S0013-4686(02)00131-7

    Article  CAS  Google Scholar 

  18. Lee YS, Sun YK, Ota S, Miyashita T, Yoshio M (2002) Electrochem Commun 4:989 doi:10.1016/S1388-2481(02)00491-5

    Article  CAS  Google Scholar 

  19. Kim J-H, Myung S-T, Sun Y-K (2004) Electrochim Acta 49:219 doi:10.1016/j.electacta.2003.07.003

    Article  CAS  Google Scholar 

  20. Yi TF, Dai CS, Gao K, Hu XG (2006) J Alloy Comp 425:343 doi:10.1016/j.jallcom.2006.01.054

    Article  CAS  Google Scholar 

  21. Wu C, Wu F, Chen L, Huang X (2002) Solid State Ionics 152-153:335 doi:10.1016/S0167-2738(02)00328-4

    Article  CAS  Google Scholar 

  22. Yi TF, Hu XG, Huo HB, Gao K (2006) Rare Met Mat Eng 35:1350

    CAS  Google Scholar 

  23. Dean JA (1992) Lange’s handbook of chemistry, 4th edn. McGraw-Hill, New York, pp 4.12–4.38

    Google Scholar 

  24. Ohzuku T, Takeda S, Iwanaga M (1999) J Power Sources 81-82:90 doi:10.1016/S0378-7753(99)00246-3

    Article  CAS  Google Scholar 

  25. Ohzuku T, Ariyoshi K, Takeda S, Sakai Y (2001) Electrochim Acta 46:2327 doi:10.1016/S0013-4686(00)00725-8

    Article  CAS  Google Scholar 

  26. Hosoya M, Ikuta H, Wakihaha M (1998) Solid State Ionics 111:153 doi:10.1016/S0167-2738(98)00156-8

    Article  CAS  Google Scholar 

  27. Jang DH, Shin YJ, Oh SM (1996) J Electrochem Soc 143:2204 doi:10.1149/1.1836981

    Article  CAS  Google Scholar 

  28. Hunter JC (1981) J Solid State Chem 39:142 doi:10.1016/0022-4596(81)90323-6

    Article  CAS  Google Scholar 

  29. Pasquier AD, Blyr A, Courjal P, Larcher D, Amatucci G, Gerand B et al (1999) J Electrochem Soc 146:428 doi:10.1149/1.1391625

    Article  Google Scholar 

  30. Tarascon JM, Mckinnon WR, Coowar F, Bowmer TN, Amatucci G, Guyomard D (1994) J Electrochem Soc 141:1421 doi:10.1149/1.2054941

    Article  CAS  Google Scholar 

  31. Yi TF, Hu XG (2007) J Power Sources 167:185 doi:10.1016/j.jpowsour.2007.02.003

    Article  CAS  Google Scholar 

  32. Hong K-J, Sun Y-K (2002) J Power Sources 109:427 doi:10.1016/S0378-7753(02)00101-5

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Xinguo Hu of Harbin Institute of Technology and Dr. Ying Wang of Institute of Chemistry, Chinese Academy of Sciences for their helpful discussion on the experimental techniques.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ting-Feng Yi or Jie Shu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, TF., Li, CY., Zhu, YR. et al. Comparison of structure and electrochemical properties for 5 V LiNi0.5Mn1.5O4 and LiNi0.4Cr0.2Mn1.4O4 cathode materials. J Solid State Electrochem 13, 913–919 (2009). https://doi.org/10.1007/s10008-008-0628-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0628-x

Keywords

Navigation