Skip to main content
Log in

Comparison between different ways to determine diffusion coefficient and by solving Fick’s equation for spherical coordinates

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The following document covers the determination of the diffusion coefficient of two powder materials: LiFePO4 and LiMn2O4 by using potentiostatic intermittent titration technique (PITT) and impedance spectroscopy methodology and compares relevant results with the following relation: \(D = \frac{{R^2 I_0 }}{{3\alpha Q}}\), which is obtained by solving Fick’s spherical coordinate equation (where I 0 is the initial step current in the PITT experiment, R is the particle radius, Q is the charge that intercalated during the step, and α is the percentage of the theoretical intercalated charge). This procedure allowed the verification of the validity of the spherical model for the powder materials, the accuracy of the expression proposed for the diffusion coefficient determination, and the correctness of the measures that had been taken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Wen CJ, Boukamp BA, Huggins RA, Weppner W (1979) J Electrochem Soc 126:2258

    Article  CAS  Google Scholar 

  2. Deiss E, Häringer D, Novak P, Haas O (2001) Electrochim Acta 46:4185

    Article  CAS  Google Scholar 

  3. Tang XC, Song XW, Shen PZ, Jia DZ (2005) Electrochim Acta 50:5581

    Article  CAS  Google Scholar 

  4. Tang XC, Pan CY, He LP, Li LQ, Chen ZZ (2004) Electrochim Acta 49:3113

    Article  CAS  Google Scholar 

  5. Deiss E (2002) Electrochim Acta 47:4027

    Article  CAS  Google Scholar 

  6. McKinnon WR, Haering RR (1987) Modern aspect in electrochemistry. Plenum, New York

    Google Scholar 

  7. Ho C, Raistrick ID, Huggins RA (1980) J Electrochem Soc 127:343

    Article  CAS  Google Scholar 

  8. Bauer EM, Bellitto C, Righini G, Pasquali M, Dell’Era A, Prosini PP (2005) J Power Sources 146:544

    Article  CAS  Google Scholar 

  9. Bellitto C, Bauer EM, Righini G, Green MA, Brandford WR, Antonini A, Pasquali M (2004) J Phys Chem Solids 65:29

    Article  CAS  Google Scholar 

  10. Antonini A, Bellitto C, Pistoia G (2001) US Patent no. 6274279

  11. Xia Y, Zhou Y, Yoshio M (1997) J Electrochem Soc 144:2593

    Article  CAS  Google Scholar 

  12. Robertson AD, Lu SH, Howard WF (1997) J Electrochem Soc 144:3505

    Article  CAS  Google Scholar 

  13. Weppner W, Huggins RA (1977) J Electrochem Soc 1569:1578

    Google Scholar 

  14. Levi MD, Levi EA, Aurbach D (1997) J Electroanal Chem 421:89

    Article  CAS  Google Scholar 

  15. Srinivasan V, Newman J (2004) J Electrochem Soc 151:A1517

    Article  CAS  Google Scholar 

  16. Montella C (2002) J Electroanal Chem 518:61

    Article  CAS  Google Scholar 

  17. Montella C (2005) Electrochim Acta 50:3746

    Article  CAS  Google Scholar 

  18. Vorotyntsev MA, Levi MD, Aurbach D (2004) J Electroanal Chem 572:299

    Article  CAS  Google Scholar 

  19. Brown ER, Sandifer JR (1986) In: Rossiter BW, Hamilton JF (eds) Physical methods of chemistry, 2nd edn. Wiley, New York

    Google Scholar 

  20. Pyun SI, Choi YM, Jeng ID (1997) J Power Sources 68:593

    Article  CAS  Google Scholar 

  21. Saїdi MY, Barker J, Koksbang R (1996) J Solid State Chem 122:195

    Article  Google Scholar 

  22. Prosini PP, Zane D, Pasquali M (2001) Electrochim Acta 46:3517

    Article  CAS  Google Scholar 

  23. Peňa JS, Soudan P, Arean CO, Palomino GT, Franger S (2006) J Solid State Electrochem 10:1

    Article  Google Scholar 

  24. Pyun SI, Choi YM, Jeng ID (1997) J Power Source 68:593

    Article  CAS  Google Scholar 

  25. Prosini PP, Lisi M, Zane D, Pasquali M (2002) Solid State Ionics 148:45

    Article  CAS  Google Scholar 

  26. Levi MD, Aurbach D (1999) Electrochim Acta 45:167

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dell’Era.

Appendix

Appendix

The solution has this form: c(r,t) = X(t)Y(r) + K 1.

X(t) is only t dependent, Y(r) is only r dependent, and K 1 is a constant:

$$\frac{{\partial X}}{{\partial t}}Y = D\frac{1}{{r^2 }}\frac{\partial }{{\partial r}}\left( {r^2 \frac{{\partial Y}}{{\partial r}}} \right)X$$
(19)
$$\frac{{\partial X}}{{\partial t}}\frac{1}{X} = D\frac{1}{{r^2 }}\frac{\partial }{{\partial r}}\left( {r^2 \frac{{\partial Y}}{{\partial r}}} \right)\frac{1}{Y}$$
(20)

the left side of the Eq. 20 is only a function of the time, while the right side is only a function of the radius. Therefore, both parts have to be constant, and the solution is:

$$c - K_1 = C{}_1\exp \left( { - Kt} \right)\frac{{A\exp \left( {i\sqrt {\frac{K}{D}r} } \right) + B\exp \left( {i\sqrt {\frac{K}{D}r} } \right)}}{r}$$
(21)

Because this equation must be also valid when r = 0, we impose A = −B, and then assuming C 1 A = C 2, we have:

$$c - K_1 = C_2 \exp \left( { - Kt} \right)\frac{{\exp \left( {i\sqrt {\frac{K}{D}r} } \right) + \exp \left( {i\sqrt {\frac{K}{D}r} } \right)}}{r}$$
(22)

assuming \(C_2 = \frac{{K_2 }}{{2i}}\) to have a real solution and knowing that

$$\exp \left( {x + iy} \right) = \exp \left( x \right)\left[ {\cos \left( y \right) + i\sin \left( y \right)} \right]$$
(23)

we can write:

$$c - K_1 = K_2 \exp \left( { - Kt} \right)\frac{{\sin \left( {\sqrt {\frac{K}{D}} r} \right)}}{r}$$
(24)

\(\sqrt {\frac{K}{D}} R = \lambda \pi \) for λ = 1, \(K = \frac{{\pi ^2 D}}{{R^2 }}\) and therefore:

$$c - K_1 = K{}_2\exp \left( { - \frac{{\pi ^2 }}{{R^2 }}Dt} \right)\frac{{\sin \left( {\frac{\pi }{R}r} \right)}}{r}$$
(25)

the boundary conditions are:

$$t \to 0;\;r = R;\;c = c_s \Rightarrow \quad K_1 = c_{\text{s}} $$
(26)
$$t \to 0;\;r = 0;\;c = c_0 \Rightarrow K_2 = \frac{{\left( {c_0 - c_{\text{s}} } \right)R}}{\pi }$$
(27)

so:

$$c_{\text{s}} - c = \frac{{\left( {c_{\text{s}} - c_0 } \right)R}}{\pi }\exp \left( { - \frac{{\pi ^2 }}{{R^2 }}Dt} \right)\frac{{\sin \left( {\frac{\pi }{R}r} \right)}}{r}$$
(28)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dell’Era, A., Pasquali, M. Comparison between different ways to determine diffusion coefficient and by solving Fick’s equation for spherical coordinates. J Solid State Electrochem 13, 849–859 (2009). https://doi.org/10.1007/s10008-008-0598-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0598-z

Keywords

Navigation