Skip to main content
Log in

High-performance thin-film Li4Ti5O12 electrodes fabricated by using ink-jet printing technique and their electrochemical properties

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Li4Ti5O12 thin-film anode with high discharge capacity and excellent cycle stability for rechargeable lithium ion batteries was prepared successfully by using ink-jet printing technique. The prepared Li4Ti5O12 thin film were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, cyclic voltammograms, and galvanostatic charge–discharge measurements. It was found that the average thickness of 10-layer Li4Ti5O12 film was about 1.7~1.8 μm and the active material Li4Ti5O12 in the thin film was nano-sized about 50–300 nm. It was also found that the prepared Li4Ti5O12 thin film exhibited a high discharge capacity of about 174 mAh/g and the discharge capacity in the 300th cycle retained 88% of the largest discharge capacity at a current density of 10.4 μA/cm2 in the potential range of 1.0–2.0 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zaghib K, Armand M, Gauthier M (1998) J Electrochem Soc 145:3135

    Article  CAS  Google Scholar 

  2. Kavan L, Procházka J, Spitler TM, Kalbácˇ M, Zukalová M, Drezen T, Grätzelc M (2003) J Electrochem Soc 150:A1000

    Article  CAS  Google Scholar 

  3. Shen C, Zhang X, Zhou Y, Li H (2002) Mater Chem Phys 78:437

    Article  Google Scholar 

  4. Brousse T, Fragnaud P, Marchand R, Schleich DM, Bohnke O, West K (1997) J Power Sources 68:412

    Article  CAS  Google Scholar 

  5. Jansen AN, Kahaian AJ, Kepler KD, Nelson PA, Amine K, Dees DW, Vissers DR, Thackeray MM (1999) J Power Sources 81–82:902

    Article  Google Scholar 

  6. Wang Q, Zakeeruddin SM, Exnar I, Gratzela M (2004) J Electrochem Soc 151:A1598

    Article  CAS  Google Scholar 

  7. Pasquier AD, Plitz I, Gural J, Badway F, Amatucci GG (2004) J Power Sources 136:160

    Article  Google Scholar 

  8. Peramunage D, Abraham KM (1998) J Electrochem Soc 145:2615

    Article  CAS  Google Scholar 

  9. Birke P, Salam F, Doring S, Weppner W (1999) Solid State Ionics 118:149

    Article  CAS  Google Scholar 

  10. Prosini PP, Mancini R, Petrucci L, Contini V, Villano P (2001) Solid State Ionics 144:185

    Article  CAS  Google Scholar 

  11. Reale P, Panero S, Scrosati B (2005) J Electrochem Soc 152:A1949

    Article  CAS  Google Scholar 

  12. Amatucci GG, Badway F, Pasquier AD, Zheng T (2001) J Electrochem Soc 148:A930

    Article  CAS  Google Scholar 

  13. Pasquier AD, Laforgue A, Simon P, Amatucci GG, Fauvarqueb J (2002) J Electrochem Soc 149:A302

    Article  Google Scholar 

  14. Pasquier AD, Plitz I, Gural J, Menocal S, Amatucci G (2003) J Power Sources 113:62

    Article  Google Scholar 

  15. Pasquier AD, Plitz I, Menocal S, Amatucci G (2003) J Power Sources 171:171

    Article  Google Scholar 

  16. Pasquier AD, Laforgue A, Simon P (2004) J Power Sources 125:95

    Article  Google Scholar 

  17. Rho Y, Kanamura K (2004) J Electrochem Soc 151:A106

    Article  CAS  Google Scholar 

  18. Wang CL, Liao YC, Hsu FC, Tai NH, Wu MK (2005) J Electrochem Soc 152:A653

    Article  CAS  Google Scholar 

  19. Yu Y, Shui JL, Chen CH (2005) Solid State Commun 135:485

    Article  CAS  Google Scholar 

  20. Rho YH, Kanamura K, Fujisaki M, Hamagami J, Suda S, Umegaki T (2002) Solid State Ionics 151:151

    Article  CAS  Google Scholar 

  21. Rho YH, Kanamura K (2003) J Electroanal Chem 559:69

    Article  CAS  Google Scholar 

  22. Ridley BA, Nivi B, Jacobson JM (1999) Science 286:746

    Article  CAS  Google Scholar 

  23. Stutzmann N, Friend RH, Sirringhaus H (2003) Science 299:1881

    Article  CAS  Google Scholar 

  24. MacBeath G, Schreiber SL (2000) Science 289:1760

    CAS  Google Scholar 

  25. Xu T, Petridou S, Lee EH, Roth EA, Vyavahare NR, Hickman JJ, Boland T (2004) Biotechnol Bioeng 85:29

    Article  CAS  Google Scholar 

  26. Wilson WC, Boland T (2003) Anat Rec A 272A:491

    Article  Google Scholar 

  27. Jacobs HO, Whitesides GM (2001) Science 291:1763

    Article  CAS  Google Scholar 

  28. Tekin E, de Gans B, Schubert US (2004) J Mater Chem 14:2627

    Article  CAS  Google Scholar 

  29. Xu F, Wang T, Li W, Jiang Z (2003) Chem Phys Lett 375:247

    Article  CAS  Google Scholar 

  30. Zhao Y, Zhou Q, Liu L, Xu J, Jiang Z (2006) Electrochim Acta 51:2639

    Article  CAS  Google Scholar 

  31. Hao Y, Lai Q, Liu D, Xu Z, Ji X (2005) Mater Chem Phys 94:382

    Article  CAS  Google Scholar 

  32. Hao Y, Lai W, Xu Z, Liu X, Ji X (2005) Solid State Ionics 176:1201

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China; Key Youth Teacher Foundation of Zhongyuan University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaomin Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Liu, G., Liu, L. et al. High-performance thin-film Li4Ti5O12 electrodes fabricated by using ink-jet printing technique and their electrochemical properties. J Solid State Electrochem 13, 705–711 (2009). https://doi.org/10.1007/s10008-008-0575-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0575-6

Keywords

Navigation