Skip to main content
Log in

EIS characterization of corrosion processes of titanium and alloy UNS N10276 in sour environments

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Titanium grade 2 (UNS R50400) and nickel-based alloy (UNS N10276) were electrochemically investigated to explore their corrosion susceptibility in sour (H2S) environments typically found on atmospheric distillation units in crude oil refineries. Electrochemical impedance spectroscopy (EIS) was used to attain the experimental results. Two individual solutions (0.05 mol/l HCl and 0.05 mol/l HCl + 500 ppm H2S) were utilized in the laboratory work to replicate major corrosive agents present in actual atmospheric distillation systems for a characteristic heavy crude oil produced in Mexico. Metals were examined at pH 1.5, 4, 6, 8, and 10 values for the two solutions to identify the effects of pH modification on corrosion processes. The results disclosed that each metal has dissimilar corrosion susceptibility depending on the pH of the environment. Therefore, pH intervals for which every metal holds minimum susceptibility were identified. In addition, the convenience of controlling the pH of streams within a definite interval (5.5–6.5) is discussed and a few hints on decision-making to improve the operation of atmospheric distillation units are also explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The unified numbering system (UNS) was conceived and established by ASTM and SAE. It is an alphanumeric code system whose designation starts with a letter followed by five digits and applies to any alloy. A distinctive UNS number is assigned to each alloy to specify its chemical composition [1].

References

  1. Gale WF, Totemeier TC (2004) Smithells metals reference book, 8th edn. Butterworth-Heinemann, UK

    Google Scholar 

  2. Borgard BG, Bieber SA, Harrell JB (1993) NACE Corrosion/93 Houston, Texas, Paper No. 633

  3. Cox WM, Mok WY, Miller RG (1990) NACE Corrosion/90 Houston, Texas, Paper No. 200

  4. Edmonson JG, Lehrer SE (1994) NACE Corrosion/94 Houston, Texas, Paper No. 514

  5. Fearnside P, Lessard RB, Stonecipher DL (1994) NACE Corrosion/94 Houston, Texas, Paper No. 516

  6. French EC, Fahey WF (1983) Mater Perform 22:9

    CAS  Google Scholar 

  7. French EC, Fahey WF (1979) Oil Gas J 77:67

    CAS  Google Scholar 

  8. Hausler RH, Coble ND (1972) Hydrocarbon Process 51:108

    CAS  Google Scholar 

  9. Lindley WA, Strong RC (1986) Oil Gas J 84:112

    Google Scholar 

  10. Merrick RD, Auerbach T (1983) Mater Perform 22:15

    CAS  Google Scholar 

  11. Rue JR, Naeger DP (1990) NACE Corrosion/90 Houston, Texas, Paper No. 211

  12. Rue JR, Naeger DP (1987) NACE Corrosion/87 Houston, Texas, Paper No. 199

  13. Valenzuela DP, Dewan AK (1999) Fluid Phase Equilib 158:829

    Article  Google Scholar 

  14. Schutt HU, Horvath RJ (1987) NACE Corrosion/87 Houston, Texas, Paper No. 198

  15. Moiseeva L, Aisin A (2007) Prot Met 43:84

    Article  CAS  Google Scholar 

  16. Efremov A, Kim S (2006) Prot Met 42:194

    Article  CAS  Google Scholar 

  17. Zav’yalov VV (2003) Prot Met 39:274

    Article  CAS  Google Scholar 

  18. Schutt HU, Rhodes PR (1996) Corrosion 52:987

    Google Scholar 

  19. Silva CC et al (2007) J Pet Sci Eng 59:219

    Article  CAS  Google Scholar 

  20. Makarenko VD et al (2007) Chem Pet Eng 43:120

    Article  CAS  Google Scholar 

  21. Rana MS, Ancheyta J, Maity SK, Rayo P (2007) Pet Sci Technol 25:187

    Article  CAS  Google Scholar 

  22. Rana MS, Ancheyta J, Maity SK, Rayo P (2007) Pet Sci Technol 25:201

    Article  CAS  Google Scholar 

  23. Rayo P, Ramírez J, Ancheyta J, Rana MS (2007) Pet Sci Technol 25:215

    Article  CAS  Google Scholar 

  24. Sánchez Berna AC, Camacho Moran V, Romero Guzmán ET, Yacamán MJ (2006) Pet Sci Technol 24:1055

    Article  CAS  Google Scholar 

  25. Marín-Cruz J, Cabrera-Sierra R, Pech-Canul MA (2007) J Solid State Electrochem 11:1245

    Article  CAS  Google Scholar 

  26. Luiz de Assis S, Wolynec S, Costa I (2006) Electrochim Acta 51:1815

    Article  CAS  Google Scholar 

  27. Chauhan LR, Gunasekaran G (2007) Corros Sci 49:1143

    Article  CAS  Google Scholar 

  28. Shanbhag AV et al (2007) J Appl Electrochem. DOI 10.1007/s10800-007-9436-8

  29. Quej-Aké L, Cabrera-Sierra R, Marín-Cruz J (2006) Proceedings of the 21st Joint International Meeting of the Electrochemical Society, Cancún Quintana Roo, México, 29 October–3 November

  30. Quej-Aké L, Cabrera-Sierra R, Arce-Estrada E, Marín-Cruz J (2008) International Journal of Electrochemical Science 3:56

    Google Scholar 

  31. Kim YJ, Andresen PL (2003) Corrosion 59:584

    CAS  Google Scholar 

  32. MacDonald DD (1992) Corrosion 48:194

    CAS  Google Scholar 

  33. Lin CC, Kim YJ, Niedrach LW, Ramp KS (1996) Corrosion 52:618

    CAS  Google Scholar 

  34. Lin CC, Smith FR, Ichikawa N, Itow M (1992) Corrosion 48:16

    Article  CAS  Google Scholar 

  35. Kaesche H (2003) Corrosion of metals: physicochemical principles and current problems. Springer, Berlin

    Google Scholar 

  36. Bonnel A, Dabosi F, Deslouis C, Duprat M, Keddam M, Tribollet B (1985) J Electrochem Soc 132:256

    Article  CAS  Google Scholar 

  37. Pech-Canul MA, Bartolo-Pérez P (2004) Surf Coat Technol 184:133

    Article  CAS  Google Scholar 

  38. Boukamp BA (1993) User’s manual—equivalent circuit version 4.51. Faculty of Chemical Technology, University of Twente, The Netherlands

    Google Scholar 

  39. Drogowska M, Ménard H, Lasia A (1996) J Appl Electrochem 26:1169

    CAS  Google Scholar 

Download references

Acknowledgements

J. Mendoza-Canales wishes to thank the Dirección de Investigación y Posgrado of the Instituto Mexicano del Petróleo for scholarship granted in working for this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Marín-Cruz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendoza-Canales, J., Marín-Cruz, J. EIS characterization of corrosion processes of titanium and alloy UNS N10276 in sour environments. J Solid State Electrochem 12, 1637–1644 (2008). https://doi.org/10.1007/s10008-008-0534-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0534-2

Keywords

Navigation