Skip to main content
Log in

Physical and electrochemical properties of La-doped LiFePO4/C composites as cathode materials for lithium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Olivine-type LiFePO4 is one of the most promising cathode materials for lithium-ion batteries, but its poor conductivity and low lithium-ion diffusion limit its practical application. The electronic conductivity of LiFePO4 can be improved by carbon coating and metal doping. A small amount of La-ion was added via ball milling by a solid-state reaction method. The samples were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM)/mapping, differential scanning calorimetry (DSC), transmission electron microscopy (TEM)/energy dispersive X-ray spectroscopy (EDS), and total organic carbon (TOC). Their electrochemical properties were investigated by cyclic voltammetry, four-point probe conductivity measurements, and galvanostatic charge and discharge tests. The results indicate that these La-ion dopants do not affect the structure of the material but considerably improve its rate capacity performance and cyclic stability. Among the materials, the LiFe0.99La0.01PO4/C composite presents the best electrochemical behavior, with a discharge capacity of 156 mAh g−1 between 2.8 and 4.0 V at a 0.2 C-rate compared to 104 mAh g−1 for undoped LiFePO4. Its capacity retention is 80% after 497 cycles for LiFe0.99La0.01PO4/C samples. Such a significant improvement in electrochemical performance should be partly related to the enhanced electronic conductivities (from 5.88 × 10−6 to 2.82 × 10−3 S cm−1) and probably the mobility of Li+ ion in the doped samples. The LiFe0.99La0.01PO4/C composite developed here could be used as a cathode material for lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ozawa K (1994) Solid State Ion 69:212

    Article  CAS  Google Scholar 

  2. Whittingham MS (2000) Solid State Ion 134:169

    Article  CAS  Google Scholar 

  3. Armstrong AR, Bruce PG (1996) Nature 381:499

    Article  CAS  Google Scholar 

  4. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188

    Article  CAS  Google Scholar 

  5. Zane D, Carewska M, Scaccia S, Cardellini F, Prosini PP (2004) Electrochimica Acta 49:4259

    Article  CAS  Google Scholar 

  6. Konstantinov K, Bewlay S, Wang GX, Lindsay M, Wang JZ, Liu HK, Dou SX, Ahn J-H (2004) Electrochim Acta 50:421

    Article  CAS  Google Scholar 

  7. Gabersceka M, Dominkoa R, Belea M, Remskarb M, Hanzelb D, Jamnika J (2005) Solid State Ion 176:1801

    Article  CAS  Google Scholar 

  8. Yang M-R, Teng T-H, Wu S-H (2006) J Power Sources 159:307

    Article  CAS  Google Scholar 

  9. Nakamura T, Miwa Y, Tabuchi M, Yamada Y (2006) J Electrochem Soc 153:A1108

    Article  CAS  Google Scholar 

  10. Park KS, Son JT, Chung HT, Kim SJ, Lee CH, Kang KT, Kim HG (2004) Solid State Comm 129:311

    Article  CAS  Google Scholar 

  11. Gabrisch H, Wilcox JD, Doeff MM (2006) Electrochem Solid-State Lett 9:A360

    Article  CAS  Google Scholar 

  12. Barker J, Saidi MY, Swoyer JL (2003) Electrochem Solid-State Lett 6(3):A53–A55

    Article  CAS  Google Scholar 

  13. Salah AA, Mauger A, Julien CM, Gendron F (2006) Materials Science and Engineering B 129:232

    Article  CAS  Google Scholar 

  14. Dong Q, Liu S, Zheng M, Zhan Y, Sun S, Lin Z (2006) Abstract 111, 209th ECS Meeting, May 7–12, Denver, Colorado

  15. Eftekhari A (2004) J Electrochem Soc 151:A1456

    Article  CAS  Google Scholar 

  16. Dominko R, Gaberscek M, Drofenik J, Bele M, Pejovnik S, Jamnik J (2003) J Power Sources 119–121:770

    Article  CAS  Google Scholar 

  17. Zhang SS, Allen JL, Xu K, Jow TR (2005) J Power Sources 147:234–240

    Article  CAS  Google Scholar 

  18. Xu Y, Lu Y, Yan L, Yang Z, Yang R (2006) J Power Sources 160:570

    Article  CAS  Google Scholar 

  19. Herle PS, Ellis B, Coombs N, Nazar LF (2004) Nature mater 3:147

    Article  CAS  Google Scholar 

  20. Chung SY, Blocking JT, Chiang YM (2002) Nature Mater 2:123

    Article  CAS  Google Scholar 

  21. Ni JF, Zhou HH, Chen JT, Zhang XX (2005) Mater Lett 59:2361

    Article  CAS  Google Scholar 

  22. Abbate M, Lala SM, Montoro LA, Rosolen JM (2005) Electrochem Solid-State Lett 8:A288

    Article  CAS  Google Scholar 

  23. Wang GX, Bewlay S, Yao J, Ahn JH, Dou SX, Liu HK (2004) Electrochem Solid-State Lett 7:A503

    Article  CAS  Google Scholar 

  24. Chung SY, Bloking J, Chiang YM (2002) Nat Mater 1:123

    Article  CAS  Google Scholar 

  25. Herle PS, Ellis B, Coombs N, Nazar LF (2004) Nat Mater 3:147

    Article  CAS  Google Scholar 

  26. Cullity BD, Stock SR, Elements of X-ray Diffraction (2001) Prentice Hall Publishers, New Jersey, USA, 3rd, Ch 5.2

  27. Chen Z, Dahn JR (2002) J Electrochem 8:450

    Google Scholar 

  28. Zhang Z, Fouchard D, Rea JR (1998) J Power Sources 70:16

    Article  CAS  Google Scholar 

  29. Ravet N, Abouimrane A, Amand M (2003) Nat Matters 2:702

    Article  CAS  Google Scholar 

  30. Burba CM, Frech R (2004) J Electrochem Soc 151:A1032

    Article  CAS  Google Scholar 

  31. Doeff MM, Hu Y, McLarnon F, Kostecki R (2003) Electrochem Solid-State Lett 6:A207

    Article  CAS  Google Scholar 

  32. Hu Y, Doeff MM, Kostecki R, Finones R (2004) J Electrochem Soc 151:A1279

    Article  CAS  Google Scholar 

  33. Doeff MM, Hu Y, McLarnon F, Kostecki R (2003) Electrochem. Solid State Lett 6:A207

    Article  CAS  Google Scholar 

  34. Fey GTK, Lu TL (2008) J Power Sources 178:807

    Google Scholar 

Download references

Acknowledgement

The authors thank Prof. W. H. Li (Department of Physics, National Central University) for his valuable suggestions and the use of Raman spectrometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Ting-Kuo Fey.

Additional information

Contribution to ICMAT 2007, Symposium K: Nanostructural and bulk materials for electrochemical power sources, July 1–6, 2007, Singapore

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, YD., Fey, G.TK. & Kao, HM. Physical and electrochemical properties of La-doped LiFePO4/C composites as cathode materials for lithium-ion batteries. J Solid State Electrochem 12, 815–823 (2008). https://doi.org/10.1007/s10008-007-0498-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-007-0498-7

Keywords

Navigation