Skip to main content
Log in

Counterion binding induces attractive interactions between negatively-charged self-assembled monolayer of 3-mercaptopropionic acid on Au(111) in reductive desorption

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical reductive desorption of the self-assembled monolayers of 3-mercaptopropionic acid in an aqueous alkaline solution gives a sharp peak with the full width at half maximum of about 20 mV irrespective of the type of cations in a linear scan voltammogram. This suggests that a strong attractive interaction exists between negatively charged carboxylate groups in the self-assembled monolayer surface due to the counterion binding, which not only simply stabilizes the adsorbed carboxylates but also makes the interaction between the adsorbed thiolates even attractive possibly by forming a two-dimensional ionic crystal. The effect of tetraalkylammonium ions on the shape of the voltammograms was also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bain CD, Evall J, Whitesides GM (1989) J Am Chem Soc 111:7155–7164

    Article  CAS  Google Scholar 

  2. Bain CD, Whitesides GM (1989) Langmuir 5:1370–1378

    Article  CAS  Google Scholar 

  3. Laibinis PE, Fox MA, Folkers JP, Whitesides GM (1991) Langmuir 7:3167–3173

    Article  CAS  Google Scholar 

  4. Evans SD, Sharma R, Ulman A (1991) Langmuir 7:156–161

    Article  CAS  Google Scholar 

  5. Laibinis PE, Whitesides GM (1992) J Am Chem Soc 114:1990–1995

    Article  CAS  Google Scholar 

  6. Folkers JP, Laibinis PE, Whitesides GM (1992) Langmuir 8:1330–1341

    Article  CAS  Google Scholar 

  7. Wang J, Frostman LM, Ward MD (1992) J Phys Chem 96:5224

    Article  CAS  Google Scholar 

  8. Offord DA, John CM, Griffin JH (1994) Langmuir 10:761–766

    Article  CAS  Google Scholar 

  9. Offord DA, John CM, Linford MR, Griffin JH (1994) Langmuir 10:883–889

    Article  CAS  Google Scholar 

  10. Lee TR, Carey RL, Biebuyck HA, Whitesides GM (1994) Langmuir 10:741–749

    Article  CAS  Google Scholar 

  11. Zhong CJ, Porter MD (1994) J Am Chem Soc 116:11616–11617

    Article  CAS  Google Scholar 

  12. Li J, Liang KS, Scoles G, Ulman A (1995) Langmuir 11:4418–4427

    Article  CAS  Google Scholar 

  13. Imabayashi S, Iida M, Hobara D, Feng ZQ, Niki K, Kakiuchi T (1997) J Electroanal Chem 428:33–38

    Article  CAS  Google Scholar 

  14. Imabayashi S, Hobara D, Kakiuchi T, Knoll W (1997) Langmuir 13:4502–4504

    Article  CAS  Google Scholar 

  15. Nishizawa M, Sunagawa T, Yoneyama H (1997) J Electroanal Chem 436:213–218

    Article  CAS  Google Scholar 

  16. Imabayashi S, Gon N, Sasaki T, Hobara D, Kakiuchi T (1998) Langmuir 14:2348–2351

    Article  CAS  Google Scholar 

  17. Hobara D, Ota M, Imabayashi S, Niki K, Kakiuchi T (1998) J Electroanal Chem 444:113–119

    Article  CAS  Google Scholar 

  18. Hobara D, Ueda K, Imabayashi S, Yamamoto M, Kakiuchi T (1999) Electrochemistry 67:1218–1220

    CAS  Google Scholar 

  19. Hobara D, Sasaki T, Imabayashi S, Kakiuchi T (1999) Langmuir 15:5073–5078

    Article  CAS  Google Scholar 

  20. Dong YZ, Shannon C (2000) Anal Chem 72(11):2371–2376

    Article  CAS  Google Scholar 

  21. Kawaguchi T, Yasuda H, Shimazu K, Porter MC (2000) Langmuir 16:9830–9840

    Article  CAS  Google Scholar 

  22. Gobi KV, Mizutani F (2000) J Electroanal Chem 484(2):172–181

    Article  CAS  Google Scholar 

  23. Hobara D, Uno Y, Kakiuchi T (2001) Phys Chem Chem Phys 3:3437–3441

    Article  CAS  Google Scholar 

  24. Munakata H, Kuwabata S, Ohko Y, Yoneyama H (2001) J Electroanal Chem 496:29–36

    Article  CAS  Google Scholar 

  25. Kakiuchi T, Iida M, Gon N, Hobara D, Imabayashi S, Niki K (2001) Langmuir 17:1599–1603

    Article  CAS  Google Scholar 

  26. Imabayashi S, Hobara D, Kakiuchi T (2001) Langmuir 17:2560–2563

    Article  CAS  Google Scholar 

  27. Azzaroni O, Vela ME, Martin H, Creus AH, Andreasen G, Salvarezza RC (2001) Langmuir 17(21):6647–6654

    Article  CAS  Google Scholar 

  28. Gorman CB, He YF, Carroll RL (2001) Langmuir 17:5324–5328

    Article  CAS  Google Scholar 

  29. Satjapipat M, Sanedrin R, Zhou FM (2001) Langmuir 17:7637–7644

    Article  CAS  Google Scholar 

  30. Shimazu K, Kawaguchi T, Isomura T (2002) J Am Chem Soc 124:652–661

    Article  CAS  Google Scholar 

  31. Shimazu K, Hashimoto Y, Kawaguchi T, Tada K (2002) J Electroanal Chem 534:163–169

    Article  CAS  Google Scholar 

  32. Kudelski A (2002) Surf Sci 502:219–223

    Article  Google Scholar 

  33. Vericat C, Lenicov FR, Tanco S, Andreasen G, Vela ME, Salvarezza RC (2002) J Phys Chem B 106:9114–9121

    Article  CAS  Google Scholar 

  34. Hobara D, Imabayashi S, Kakiuchi T (2002) Nano Lett 2:1021–1025

    Article  CAS  Google Scholar 

  35. Nakamura T, Kimura R, Sakai H, Abe M, Kondoh H, Ohta T, Matsumoto M (2002) Appl Surf Sci 202:241–251

    Article  CAS  Google Scholar 

  36. Chen X, Ferrigno R, Yang J, Whitesides GM (2002) Langmuir 18:7009–7015

    Article  CAS  Google Scholar 

  37. Roux S, Duwez AS, Demoustier-champagne S (2003) Langmuir 19:306–313

    Article  CAS  Google Scholar 

  38. Oyamatsu D, Kanaya N, Hirano Y, Nishizawa M, Matsue T (2003) Electrochemistry 71:439–441

    CAS  Google Scholar 

  39. Burshtain D, Mandler D (2004) ChemPhysChem 5:1532–1539

    Article  CAS  Google Scholar 

  40. Tian Y, Mao LQ, Okajima T, Ohsaka T (2004) Anal Chem 76:4162–4168

    Article  CAS  Google Scholar 

  41. Freire RS, Kubota LT (2004) Electrochim Acta 49:3795–3800

    Article  CAS  Google Scholar 

  42. Campuzano S, Pedrero M, Villena FJM, Pingarron JM (2004) Electroanalysis 16:1385–1392

    Article  CAS  Google Scholar 

  43. Liu Y, Yang M, Zheng Z, Zhang B (2005) Electrochem Commun 7:344–348

    Article  CAS  Google Scholar 

  44. Mena ML, Carralero V, Gonzalez-Cortes A, Yanez-Sedeno P, Pingarron JM (2005) Electroanalysis 17:2147–2155

    Article  CAS  Google Scholar 

  45. Burshtain D, Mandler D (2005) J Electroanal Chem 581:310–319

    Article  CAS  Google Scholar 

  46. Chen H, Heng CK, Puiu PD, Zhou XD, Lee AC, Lim TM, Tan SN (2005) Anal Chim Acta 554:52–59

    Article  CAS  Google Scholar 

  47. Zhang XH, Wang SF, Shen QH (2005) Microchim Acta 149:37–42

    Article  CAS  Google Scholar 

  48. Carvalhal RT, Freire RS, Kubota LT (2005) Electroanalysis 17:1251–1259

    Article  CAS  Google Scholar 

  49. Kudelski A, Michota A, Bukowska J (2005) J Raman Spectrosc 36:709–714

    Article  CAS  Google Scholar 

  50. Wrzosek B, Bukowska J, Kudelski A (2005) Vibr Spectrosc 39:257–261

    Article  CAS  Google Scholar 

  51. Albrecht T, Li W, Ulstrup J, Haehnel W, Hildebrandt P (2005) ChemPhysChem 6:961–970

    Article  CAS  Google Scholar 

  52. Ujihara M, Imae T (2006) J Colloid Interface Sci 293:333–341

    Article  CAS  Google Scholar 

  53. Imabayashi S, Kashiwa M, Watanabe M (2006) Electrochemistry 74:186–188

    CAS  Google Scholar 

  54. Kado S, Murakami T, Kimura K (2006) Anal Sci 22:521–527

    Article  CAS  Google Scholar 

  55. Xu JS, Bowden EF (2006) J Am Chem Soc 128:6813–6822

    Article  CAS  Google Scholar 

  56. Kubo I, Nakane Y, Maehara N (2006) Electrochim Acta 51(24):5163–5168

    Article  CAS  Google Scholar 

  57. Ito E, Nakamura F, Kanai K, Ouchi Y, Seki K, Hara M (2006) Jpn J Appl Phys 45:409–412

    Article  CAS  Google Scholar 

  58. Cecchet F, Marcaccio M, Margotti M, Paolucci F, Rapino S, Rudolf P (2006) J Phys Chem B 110:2241–2248

    Article  CAS  Google Scholar 

  59. Yue HJ, Waldeck DH, Petrovic J, Clark RA (2006) J Phys Chem B 110:5062–5072

    Article  CAS  Google Scholar 

  60. Phong PH, Yamamoto M, Kakiuchi T (2006) Sci Technol Adv Mater 7:552–557

    Article  CAS  Google Scholar 

  61. Zhang JD, Chi QJ, Ulstrup J (2006) Langmuir 22:6203–6213

    Article  CAS  Google Scholar 

  62. Yu JJ, Tan YH, Li X, Kuo PK, Liu GY (2006) J Am Chem Soc 128:11574–11581

    Article  CAS  Google Scholar 

  63. Limbut W, Kanatharana P, Mattiasson B, Asawatreratanakul P, Thavarungkul P (2006) Biosens Bioelectron 22:233–240

    Article  CAS  Google Scholar 

  64. Kim SJ, Gobi KV, Tanaka H, Shoyama Y, Miura N (2006) Chem Lett 35:1132–1133

    Article  CAS  Google Scholar 

  65. Carot ML, Macagno VA, Paredes-olivera P, Patrito EM (2007) J Phys Chem C 111:4294–4304

    Article  CAS  Google Scholar 

  66. Campuzano S, Gamella M, Serra B, Reviejo AJ, Pingarron JM (2007) J Agric Food Chem 55(6):2109–2114

    Article  CAS  Google Scholar 

  67. Kakiuchi T, Usui H, Hobara D, Yamamoto M (2002) Langmuir 18:5231–5238

    Article  CAS  Google Scholar 

  68. Creager SE, Clarke J (1994) Langmuir 10:3675–3683

    Article  CAS  Google Scholar 

  69. Hu K, Bard AJ (1997) Langmuir 13:5114–5119

    Article  CAS  Google Scholar 

  70. Vezenov DV, Noy A, Rozsnyai LF, Lieber CM (1997) J Am Chem Soc 119:2006–2015

    Article  Google Scholar 

  71. Smalley JF, Chalfant K, Feldberg SW, Nahir TM, Bowden EF (1999) J Phys Chem B 103:1676–1685

    Article  CAS  Google Scholar 

  72. White HS, Peterson JD, Cui QZ, Stevenson KJ (1998) J Phys Chem B 102:2930–2934

    Article  CAS  Google Scholar 

  73. Kakiuchi T, Iida M, Imabayashi S, Niki K (2000) Langmuir 16:5397–5401

    Article  CAS  Google Scholar 

  74. Kim K, Kwak J (2001) J Electroanal Chem 512:83–91

    Article  CAS  Google Scholar 

  75. Schweiss R, Werner C, Knoll W (2003) J Electroanal Chem 540:145–151

    Article  CAS  Google Scholar 

  76. Kane V, Mulvaney P (1998) Langmuir 14:3303–3311

    Article  CAS  Google Scholar 

  77. Kudelski A (2002) Langmuir 18:4741–4747

    Article  CAS  Google Scholar 

  78. Kudelski A (2003) J Raman Spectrosc 34:853–862

    Article  CAS  Google Scholar 

  79. Widrig CA, Chung C, Porter MD (1991) J Electroanal Chem 310:335–359

    Article  CAS  Google Scholar 

  80. Hobara D, Yamamoto M, Kakiuchi T (2001) Chem Lett 374–375

  81. Ooi Y, Hobara D, Yamamoto M, Kakiuchi T (2005) Langmuir 21:11185–11189

    Article  CAS  Google Scholar 

  82. Phong PH, Ooi Y, Hobara D, Nishi N, Yamamoto M, Kakiuchi T (2005) Langmuir 21:10581–10586

    Article  CAS  Google Scholar 

  83. Zhang J, Chi Q, Nielsen JU, Friis EP, Andersen JET, Ulstrup J (2000) Langmuir 16:7229–7237

    Article  CAS  Google Scholar 

  84. Angerstein-Kozlowska H, Klinger J, Conway BE (1977) J Electroanal Chem 75:45–60

    Article  CAS  Google Scholar 

  85. Himmel HJ, Terfort A, Woll C (1998) J Am Chem Soc 120:12069–12074

    Article  CAS  Google Scholar 

  86. Kudelski A, Pecul M, Bukowska J (2002) J Raman Spectrosc 33:796–800

    Article  CAS  Google Scholar 

  87. Munakata H, Oyamatsu D, Kuwabata S (2004) Langmuir 20:10123–10128

    Article  CAS  Google Scholar 

  88. Hatchett DW, Uibel RH, Stevenson KJ, Harris JM, White HS (1998) J Am Chem Soc 120:1062–1069

    Article  CAS  Google Scholar 

  89. Dong Y, Xu Z (1999) Langmuir 15:4590–4594

    Article  CAS  Google Scholar 

  90. Hayter JB, Hunter RJ (1972) J Electroanal Chem 37:71–80

    Article  CAS  Google Scholar 

  91. Wandlowski T, de Levie R (1992) J Electroanal Chem 329:103–127

    Article  CAS  Google Scholar 

  92. Tymosiak-Zielinska A, Borkowska Z (2001) Electrochim Acta 46:3073–3082

    Article  CAS  Google Scholar 

  93. Giz MJ, Duong B, Tao NJ (1999) J Electroanal Chem 465:72–79

    Article  CAS  Google Scholar 

  94. Petri M, Kolb DM, Memmert U, Meyer H (2003) Electrochim Acta 49:175–182

    Article  CAS  Google Scholar 

  95. Sawaguchi T, Sato Y, Mizutani F (2001) J Electroanal Chem 507:256–262

    Article  CAS  Google Scholar 

  96. Nikolaeva-Fedorovich VN, Fokina LA, Petrii OA (1958) Dokl Akad Nauk SSSR 122:639–642

    CAS  Google Scholar 

  97. Nikolaeva-Fedorovich VN, Damaskin BB, Petrii OA (1960) Coll Czech Chem Commun 25:2982–2992

    CAS  Google Scholar 

  98. Frumkin AN, Petrii OA (1961) Dokl Akad Nauk SSSR 136:1158–1161

    CAS  Google Scholar 

Download references

Acknowledgement

We greatly acknowledge the comments by Koichi Aoki on the possible formation of a two-dimensional ionic crystal in reductive desorption of MPA SAMs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Kakiuchi.

Additional information

Dedicated to Professor Oleg Petrii on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitagawa, Y., Hobara, D., Yamamoto, M. et al. Counterion binding induces attractive interactions between negatively-charged self-assembled monolayer of 3-mercaptopropionic acid on Au(111) in reductive desorption. J Solid State Electrochem 12, 461–469 (2008). https://doi.org/10.1007/s10008-007-0471-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-007-0471-5

Keywords

Navigation