Skip to main content
Log in

Electrochemical performance of Co–Al layered double hydroxide nanosheets mixed with multiwall carbon nanotubes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Regular hexagonal Co–Al layered double hydroxides (Co–Al LDH) were synthesized by urea-induced homogeneous precipitation. This material proved to be nanosheets by scanning electron microscopy and X-ray diffraction measurements. The electrochemical capacitive behavior of the nanosheets in 1 M KOH solution were evaluated by constant current charge/discharge and cyclic voltammetric measurements, showing a large specific capacitance of 192 F·g−1 even at the high current density of 2 A·g−1. When multiwall carbon nanotubes (MWNTs) were mixed with the Co–Al LDH, it was found that the specific capacitance and long-life performance of all composite electrodes at high current density are superior to pure LDH electrode. When the added MWNTs content is 10 wt%, the specific capacitance increases to 342.4 F·g−1 and remains at a value of 304 F·g−1 until the 400th cycle at 2 A·g−1, showing that this is a promising electrode material for supercapacitors working at heavy load. According to the electrochemical impedance spectra, MWNTs greatly increase the electronic conductivity between MWNTs and the surface of Co–Al LDH, which consequently facilitates the access of ions in the electrolyte and electrons to the electrode/electrolyte interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Frackowiak E, Beguin F (2001) Carbon 39:937

    Article  CAS  Google Scholar 

  2. Kotz R, Carlen M (2000) Electrochim Acta 45:2483

    Article  CAS  Google Scholar 

  3. Farsi H, Gobal F (2007) J Solid State Electrochem 11:1085

    Article  CAS  Google Scholar 

  4. Wang Q, Wen ZH, Li JH (2006) Adv Funct Mater 16:2141

    Article  CAS  Google Scholar 

  5. Jiang JH, Kucernak A (2002) Electrochim Acta 47:2381

    Article  CAS  Google Scholar 

  6. Arbizzani C, Mastragostino M, Soavi F (2001) J Power Sources 100:164

    Article  CAS  Google Scholar 

  7. Mastragostino M, Arbizzani C, Soavi F (2001) J Power Sources 97–8:812

    Article  Google Scholar 

  8. Jow TR, Zheng JP (1998) J Electrochem Soc 145:49

    Article  CAS  Google Scholar 

  9. Sels B, De Vos D, Buntinx M, Pierard F, Kirsch-De Mesmaeker A, Jacobs P (1999) Nature 400:855

    Article  CAS  Google Scholar 

  10. He Q, Yin S, Sato T (2004) J Phys Chem Solids 65:395

    Article  CAS  Google Scholar 

  11. Liu ZP, Ma RZ, Osada M, Iyi N, Ebina Y, Takada K, Sasaki T (2006) J Amer Chem Soc 128:4872

    Article  CAS  Google Scholar 

  12. Leroux F, Raymundo-Pinero E, Nedelec JM, Beguin F (2006) J Mater Chem 16:2074

    Article  CAS  Google Scholar 

  13. Li F, Tan Q, Evans DG, Duan X (2005) Catal Lett 99:151

    Article  CAS  Google Scholar 

  14. Zhang XG, Liu XM, Bao SJ, Wang YG (2004) Chin J Inorg Chem 20:94

    CAS  Google Scholar 

  15. He KX, Zhang XG, Li J (2006) Electrochim Acta 51:1289

    Article  CAS  Google Scholar 

  16. Wang Y, Yang WS, Zhang SC, Evans DG, Duan X (2005) J Electrochem Soc 152:A2130

    Article  Google Scholar 

  17. Subramanian V, Zhu HW, Wei BQ (2006) Electrochem Commun 8:827

    Article  CAS  Google Scholar 

  18. Vix-Guterl C, Frackowiak E, Jurewicz K, Friebe M, Parmentier J, Beguin F (2005) Carbon 43:1293

    Article  CAS  Google Scholar 

  19. Fuertes AB, Pico F, Rojo JM (2004) J Power Sources 133:329

    Article  CAS  Google Scholar 

  20. Long JW, Young AL, Rolison DR (2003) J Electrochem Soc 150:A1161

    Article  CAS  Google Scholar 

  21. Gupta V, Miura N (2005) Electrochem Solid State Lett 8:A630

    Article  CAS  Google Scholar 

  22. Wang XY, Wang XY, Huang WG, Sebastian PJ, Gamboa S (2005) J Power Sources 140:211

    Article  CAS  Google Scholar 

  23. Hosono E, Fujihara S, Honma I, Ichihara M, Zhou HS (2006) J Power Sources 158:779

    Article  CAS  Google Scholar 

  24. Jaubertie C, Holgado MJ, San Roman MS, Rives V (2006) Chem Mater 18:3114

    Article  CAS  Google Scholar 

  25. Miyata S (1983) Clays Clay Miner 31:305

    Article  CAS  Google Scholar 

  26. Scavetta E, Berrettoni M, Nobili F, Tonelli D (2005) Electrochim Acta 50:3305

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Basic Research Program of China (973 Program; No. 2007CB209703), National Natural Science Foundation of China (No.20403014, No.20633040) and Natural Science Foundation of Jiangsu Province (BK2006196).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Gang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, LH., Zhang, XG. & Liu, Y. Electrochemical performance of Co–Al layered double hydroxide nanosheets mixed with multiwall carbon nanotubes. J Solid State Electrochem 12, 1129–1134 (2008). https://doi.org/10.1007/s10008-007-0455-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-007-0455-5

Keywords

Navigation