Skip to main content
Log in

EQCM studies on Pd–Ni alloy oxidation in basic solution

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Processes of electrochemical oxidation of Pd-rich Pd–Ni alloys in basic solutions were studied with the aim of electrochemical quartz crystal microbalance. Potentials of current peaks of Ni(II)/Ni(III) redox couple are independent of alloy composition. On the other hand, Ni(II)/Ni(III) redox couples formed on Pd–Ni alloys and Ni differ in respect to the structure of involved compounds and the processes of transport of the species accompanying oxidation/reduction reaction. The process of oxidation of Pd exhibits some differences between pure Pd and Pd–Ni alloys. This concerns mainly on participation of adsorbed water/OH in Pd oxidation process. In the initial stages of Pd oxidation, the source of oxygen is water/OH from the bulk of the solution. At this stage of the process, the product of Pd oxidation could be described as Pd(OH)2 or PdOH2O. With further progress in oxidation process, adsorbed species, water/OH, start to play a decisive role. Hydrous species, i.e. Pd(OH)2 or PdOH2O, are also reduced in the final stages of Pd(II) reduction process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Grdeń M, Piaścik A, Koczorowski Z, Czerwiński, A (2002) J Electroanal Chem 532:35

    Article  Google Scholar 

  2. Łukaszewski M, Czerwiński, A (2003) Electrochim Acta 48:2435

    Article  CAS  Google Scholar 

  3. Żurowski A, Łukaszewski M, Czerwiński, A (2006) Electrochim Acta 51:3112

    Article  CAS  Google Scholar 

  4. Łukaszewski M, Czerwiński, A (2006) J Electroanal Chem 589:87

    Article  CAS  Google Scholar 

  5. Bockris JO’M, Damjanovic A, Mannan RJ (1968) J Electroanal Chem 18:349

    Article  CAS  Google Scholar 

  6. Akano UG, Smeltzer WW, Thompson DA, Davies JA (1990) J Electrochem Soc 137:2175

    Article  CAS  Google Scholar 

  7. Krstajić NV, Burojević S, Vračar LM (2000) Int J Hydrogen Energy 25:635

    Article  Google Scholar 

  8. Chun JH, Jeong SK (2003) Int J Hydrogen Energy 28:1333

    Article  CAS  Google Scholar 

  9. Brooman EW, Kuhn AT (1974) J Electroanal Chem 49:325

    Article  CAS  Google Scholar 

  10. Grdeń M, Paruszewska A, Czerwiński A (2001) J Electroanal Chem 502:91

    Article  Google Scholar 

  11. Rand DAJ, Woods R (1972) J Electroanal Chem 36:57

    Article  CAS  Google Scholar 

  12. Capon A, Parsons R (1975) J Electroanal Chem 65:285

    Article  CAS  Google Scholar 

  13. Kadirgan F, Beden B, Leger JM, Lamy C (1981) J Electroanal Chem 125:89

    Article  CAS  Google Scholar 

  14. Siwek H, Łukaszewski M, Czerwiński A (2004) Pol J Chem 78:1121

    CAS  Google Scholar 

  15. Watanabe M, Motoo S (1975) J Electroanal Chem 60:267

    Article  CAS  Google Scholar 

  16. Overbury SH, Bertrand PA, Somorjai GA (1975) Chem Rev 75:547

    Article  CAS  Google Scholar 

  17. Jabłoński A (1977) Adv Colloid Interface Sci 8:213

    Article  Google Scholar 

  18. Łukaszewski M, Czerwiński, A (2006) J Electroanal Chem 589:38

    Article  CAS  Google Scholar 

  19. Ticanelli E, Beery JG, Paffett MT, Cottesfeld S (1989) J Electroanal Chem 258:61

    Article  CAS  Google Scholar 

  20. Ross PN, Kinoshita K, Scarpellino AJ, Stonehart P (1975) J Electroanal Chem 63:97

    Article  CAS  Google Scholar 

  21. Kuśmierczyk K, Łukaszewski M, Rogulski Z, Siwek H, Kotowski J, Czerwiński A (2002) Pol J Chem 76:607

    Google Scholar 

  22. Grdeń M, Kuśmierczyk K, Czerwiński A (2002) J Solid State Electrochem 7:43

    Article  CAS  Google Scholar 

  23. Grdeń M, Czerwiński A, Golimowski J, Bulska E, Krasnodębska-Ostręga B, Marassi R, Zamponi S (1999) J Electroanal Chem 460:30

    Article  Google Scholar 

  24. Lee WJ, Pyun SI, Yang TH, Kim JD, Baek YH, Kim HG (1997) J Solid State Electrochem 1:120

    Article  CAS  Google Scholar 

  25. Bidwell LR, Speiser R (1964) Acta Crystallogr 17:1473

    Article  CAS  Google Scholar 

  26. Kondrashev YD, Tverdovskii IP, Vert ZL (1951) Dokl Akad Nauk USSR 78:729

    CAS  Google Scholar 

  27. Noh H, Flanagan TB, Gavra Z, Johnson JR, Reilly JJ (1991) Scr Metall Mater 25:2177

    Article  CAS  Google Scholar 

  28. Lipec TV, Vert ZL, Tverdovskii IP (1969) Elektrokhimiya 5:71

    Google Scholar 

  29. Shelyapina MG, Fruchart D, Hlila EK, Miraglia S, dos Santos DS, Tavares SSM, Tobola J (2003) J Alloys Compd 356-357:218

    Article  CAS  Google Scholar 

  30. Ikeda K (1987) J Appl Phys 62:4499

    Article  CAS  Google Scholar 

  31. Özdemir Karta S, Tomak M, Çağin T (2005) Physica B 355:382

    Article  CAS  Google Scholar 

  32. Grdeń M, Klimek K, Czerwiński A (2006) Electrochim Acta 51:2221

    Article  CAS  Google Scholar 

  33. Rosamilia JM, Abys JA, Miller B (1991) Electrochim Acta 36:1203

    Article  CAS  Google Scholar 

  34. Barton JC, Green JAS, Lewis FA (1966) Trans Faraday Soc 62:960

    Article  CAS  Google Scholar 

  35. Nicolas M, Burger JP, Dumoulin L (1989) Z Phys Chem NF 163:67

    Google Scholar 

  36. Shobha T, Aravinda CL, Bera P, Gomathi Devi L, Mayanna SM (2003) Mater Chem Phys 80:656

    Article  CAS  Google Scholar 

  37. Schlecker H, Blank P, Feller HG (1979) Z Met kd 70:638

    CAS  Google Scholar 

  38. Vračar LJ, Burojević S, Krstajić NV (1998) Int J Hydrogen Energy 23:1157

    Article  Google Scholar 

  39. Hu CC, Wen TC (1996) Electrochim Acta 41:1505

    Article  CAS  Google Scholar 

  40. Petrii OA, Smirnova NV, Aminov AY (1998) Russ J Electrochem 34:1010

    CAS  Google Scholar 

  41. Petrii OA (1996) Electrochim Acta 41:2307

    Article  CAS  Google Scholar 

  42. Trasatti S (ed) (1980) Electrodes of conductive metallic oxides. Part A. Studies in physical and theoretical chemistry. Elsevier, Amsterdam

  43. Najdeker E, Golimowski J (1991) Fresenius J Anal Chem 339:868

    Article  Google Scholar 

  44. Brundle CR, Evans CA Jr, Wilson S (1992) In: Fitzpatrick LE (ed) Encyclopedia of Materials Characterization. Butterworth-Heinemann, Boston

    Google Scholar 

  45. Koh W, Kutner W, Jones MT, Kadish KM (1993) Electroanalysis 5:209

    Article  CAS  Google Scholar 

  46. Grdeń M, Kotowski J, Czerwiński A (1999) J Solid State Electrochem 3:348

    Article  Google Scholar 

  47. Grdeń M, Kotowski J, Czerwiński A (2000) J Solid State Electrochem 4:273

    Article  Google Scholar 

  48. Łukaszewski M, Grdeń, M, Czerwiński A (2004) J Electroanal Chem 573:87

    Article  CAS  Google Scholar 

  49. Shen CC, Lee SM, Tang JC, Perng TP (2003) J Alloys Compd 356-357:800

    Article  CAS  Google Scholar 

  50. Lee JW, Pyun SI, Filipek S (2003) Electrochim Acta 48:1603

    Article  CAS  Google Scholar 

  51. Hahn F, Floner D, Beden B, Lamy C (1987) Electrochim Acta 32:1631

    Article  CAS  Google Scholar 

  52. de Souza LMM, Kong FP, McLarmont FR, Muller RH (1997) Electrochim Acta 42:1253

    Article  Google Scholar 

  53. Medway SL, Lucas CA, Kowal A, Nichols RJ, Johnson D (2006) J Electroanal Chem 587:172

    Article  CAS  Google Scholar 

  54. Seyeux A, Maurice V, Klein LH, Marcus P (2005) J Solid State Electrochem 9:337

    Article  CAS  Google Scholar 

  55. Seyeux A, Maurice V, Klein LH, Marcus P (2006) J Electrochem Soc 153:B453

    Article  CAS  Google Scholar 

  56. Yau SL, Fan FRF, Moffat TP, Bard AJ (1994) J Phys Chem 98:5493

    Article  CAS  Google Scholar 

  57. Grdeń M, Klimek K (2005) J Electroanal Chem 581:122

    Article  CAS  Google Scholar 

  58. Paik W, Szklarska-Smialowska Z (1980) Surf Sci 96:401

    Article  CAS  Google Scholar 

  59. Wronkowska AA (1989) Surf Sci 214:507

    Article  CAS  Google Scholar 

  60. Larramona G, Gutierrez C (1990) J Electrochem Soc 137:428

    Article  CAS  Google Scholar 

  61. Visscher W, Barendrecht E (1983) Surf Sci 135:436

    Article  CAS  Google Scholar 

  62. Nan J, Yang Y, Lin Z (2006) Electrochimica Acta 51:4873

    Article  CAS  Google Scholar 

  63. Grdeń M, Klimek K, Czerwiński A (2004) J Solid State Electrochem 8:390

    Article  CAS  Google Scholar 

  64. Dmochowska M, Czerwiński, A (1998) J Solid State Electrochem 2:16

    Article  CAS  Google Scholar 

  65. Kowal A, Niewiara R, Perończyk, B, Haber J (1996) Langmuir 12:2332

    Article  CAS  Google Scholar 

  66. Wolf JF, Yeh LSR, Damjanovic A (1981) Electrochim Acta 26:409

    Article  CAS  Google Scholar 

  67. Birss VI, Chan M, Phan T, Vanýsek P, Zhang A (1996) J Chem Soc Faraday Trans 92:4041

    Article  CAS  Google Scholar 

  68. Dall’Antonia LH, Tremiliosi-Filho G, Jerkiewicz G (2001) J Electroanal Chem 502:72

    Article  CAS  Google Scholar 

  69. Zou S, Chan HYH, Williams CT, Weaver MJ (2000) Langmuir 16:754

    Article  CAS  Google Scholar 

  70. Tian M, Conway BE (2005) J Electroanal Chem 581:176

    Article  CAS  Google Scholar 

  71. Zhang AJ, Gaur M, Birss VI (1995) J Electroanal Chem 389:149

    Article  Google Scholar 

  72. Bode H, Dehmelt K, Witte J (1966) Electrochim Acta 11:1079

    Article  CAS  Google Scholar 

  73. Zhang C, Park SM (1989) J Electrochem Soc 136:3333

    Article  CAS  Google Scholar 

  74. Rand DAJ, Woods RJ (1970) J Electroanal Chem 31:29

    Article  Google Scholar 

  75. Breiter MW (1977) J Electroanal Chem 81:275

    Article  CAS  Google Scholar 

  76. Waser J, Levy HA, Peterson SW (1953) Acta Crystallogr 6:661

    Article  CAS  Google Scholar 

  77. McEwen JS (1971) J Phys Chem 75:1782

    Article  CAS  Google Scholar 

  78. Faria IC, Torresi R, Gorenstein A (1993) Electrochim Acta 38:2765

    Article  CAS  Google Scholar 

  79. Wehrens-Dijksma M, Notten PHL (2006) Electrochim Acta 51:3609

    Article  CAS  Google Scholar 

  80. French HM, Henderson MJ, Hillman AR, Veil E (2001) J Electroanal Chem 500:192

    Article  CAS  Google Scholar 

  81. Kim MS, Kim KB (1998) J Electrochem Soc 145:507

    Article  CAS  Google Scholar 

  82. Stoddart CTH, Moss RL, Pope D (1975) Surf Sci 53:241

    Article  CAS  Google Scholar 

  83. Bozzolo G, Noebe RD (2003) Acta Mater 51:4395

    Article  CAS  Google Scholar 

  84. Bolzán AE (1995) J Electroanal Chem 380:127

    Article  Google Scholar 

  85. Hu CC, Wen TC (1995) Electrochim Acta 40:495

    Article  CAS  Google Scholar 

  86. Chausse V, Regull P, Victori L (1987) J Electroanal Chem 238:115

    Article  CAS  Google Scholar 

  87. Juodkazis K, Juodkazyt J, Sebeka B, Stalnionis G, Lukinskas A (2003) Russian J Electrochem 39:959

    Article  Google Scholar 

  88. Jerkiewicz G (1999) In: Wieckowski A (ed) Interfacial chemistry. Theory, experiment and applications. M Dekker, New York

    Google Scholar 

  89. Juodkazis K, Juodkazytė, J, Juodienė T, Šukienė V, Savickaja I (2006) Electrochim Acta 51:6159

    Article  CAS  Google Scholar 

  90. Angerstein-Kozlowska H, Conway BE, Sharp WBA (1973) J Electroanal Chem 43:9

    Article  CAS  Google Scholar 

  91. Jerkiewicz G, Vatankhah G, Lessard J, Soriaga MP, Park YS (2004) Electrochim Acta 49:1451

    CAS  Google Scholar 

  92. Birss VI, Chang M, Segal J (1993) J Electroanal Chem 355:181

    Article  CAS  Google Scholar 

  93. Solomun T (1987) J Electroanal Chem 217:435

    Article  CAS  Google Scholar 

  94. Bagotzky VS, Tarasevich MR (1979) J Electroanal Chem 101:1

    Article  Google Scholar 

  95. Gossner K, Mizera E (1981) J Electroanal Chem 125:347

    CAS  Google Scholar 

  96. Conway BE (1995) Prog Surf Sci 49:331

    Article  CAS  Google Scholar 

  97. Seo M, Aomi M (1992) J Electrochem Soc 139:1087

    Article  CAS  Google Scholar 

  98. Harrington DA (1997) J Electroanal Chem 420:101

    Article  CAS  Google Scholar 

  99. Appleby AJ (1975) J Electroanal Chem 68:45

    Article  Google Scholar 

Download references

Acknowledgement

This work was financially supported by 6 Framework Program, contract no. 032517, and by the Ministry of Science and Higher Education (MNiSW) as a research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Czerwiński.

Additional information

This study is dedicated to the 70th birthday of Professor Oleg Petrii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grdeń, M., Czerwiński, A. EQCM studies on Pd–Ni alloy oxidation in basic solution. J Solid State Electrochem 12, 375–385 (2008). https://doi.org/10.1007/s10008-007-0452-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-007-0452-8

Keywords

Navigation