Skip to main content
Log in

Failure mechanism of Li-ion battery at overcharge conditions

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The overcharge kinetics of a commercial prismatic Li-ion battery at different current rates (1 C, 2 C, and 3 C) has been studied. Battery surface temperature, heat output, and voltage were monitored and analyzed during overcharge testing. It has been shown that the heat rate of the battery surface does not increase in proportion to the applied current rate. Separator shutdown properties may be realized for heat rates less than 3 °C/min. Li-ion batteries have been submitted to different stages of overcharge by a “soft” overcharge technique (1 C to 4.4, 4.6, and 5.0 V). Differential scanning calorimetry (DSC) tests of the charged anode, cathode, and separator recovered from overcharged cells have been performed. It was found that the anode at different overcharged states has two main exothermic peaks at 120 and 300–320 °C. At a higher state of overcharge (SOOC), the second peak shifts to a lower temperature. DSC for overcharged cathodes has more complicated profiles depending on SOOC. Increasing the cutoff voltage from 4.4 to 5.0 V shifts the maximum of the first temperature peak from 235 to 200 °C and the second from 345 to 320 °C. Electrical impedance spectroscopy and scanning electron microscopy have been used to characterize electrode materials at different SOOC and overcharge conditions. The heat rate (related to current), cell construction, and design are considered as the main factors of Li-ion battery failure at overcharge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Reimers JN, Dahn JR (1992) J Electrochem Soc 139:2091

    Article  CAS  Google Scholar 

  2. Maleki H, Hallaj SA, Selman JR, Dinwiddie RB, Wang H (1999) J Electrochem Soc 146:947

    Article  CAS  Google Scholar 

  3. Du Pasquier A, Disma F, Bowmer T, Gozdz AS, Amatucci GG, Tarascon J-M (1998) J Electrochem Soc 145:472

    Article  Google Scholar 

  4. Maleki H, Deng G, Anani A, Howard J (1999) J Electrochem Soc 146:3224

    Article  CAS  Google Scholar 

  5. Dahn JR, Fuller EW, Obrovac M, von Sacken U (1994) Solid State Ionics 69:12

    Article  Google Scholar 

  6. Cho J (2004) J Power Sources 126:186

    Article  CAS  Google Scholar 

  7. Kim J, Noh M, Cho J (2006) J Power Sources 153:345

    Article  CAS  Google Scholar 

  8. Cho J, Kim T-G, Kim C, Lee J-G, Kim Y-W, Park B (2005) J Power Sources 146:58

    Article  CAS  Google Scholar 

  9. Xiao L, Ai X, Cao Y, Yang H (2004) Electrochim Acta 49:4189

    Article  CAS  Google Scholar 

  10. Moshuchak LM, Bulinski M, Lamanna WM, Wang RL, Dahn JR (2007) Electrochem Comm 7:1497

    Article  Google Scholar 

  11. Chen G, Thomas A, Karen E, Newman J, Richardson TJ (2005) Electrochim Acta 50:4666

    Article  CAS  Google Scholar 

  12. Underwriters Laboratories (1995) A safety standard for lithium batteries, UL 1642, 3rd edn.

  13. Japan Battery Association (1997) Guideline for the safety evaluation of secondary lithium cells. Tokyo, Japan

  14. Leising RA, Palazzo MJ, Takeuchi ES, Takeuchi KJ (2001) J Electrochem Soc 148:A838

    Article  CAS  Google Scholar 

  15. Tobishima S, Yamaki J (1999) J Power Sources 81–82:882

    Article  Google Scholar 

  16. Kumai K, Miyashiro H, Kobayashi Y, Takei K, Ishikawa RI (1999) J Power Sources 81–82:715

    Article  Google Scholar 

  17. Aurbach D, Gamolsky K, Markovsky B, Salitra G, Gofer Y, Heider U, Oesten R, Schmidt M (2000) J Electrochem Soc 147:1322

    Article  CAS  Google Scholar 

  18. Hjelm AK, Lindbergh G (2002) Electrochim Acta 47:1747

    Article  CAS  Google Scholar 

  19. Aurbach D, Zaban A, Gofer Y, Ein Ely Y, Weissman I, Chusid O, Abramson O (1995) J Power Sources 54:76

    Article  CAS  Google Scholar 

  20. Aurbach D, Ein Eli Y, Markovsky B, Zaban A, Luski S, Carmeli Y, Yamin H (1995) J Electrochem Soc 142:2882

    Article  CAS  Google Scholar 

  21. Zhang Z, Fouchard D, Rea JR (1998) J Power Sources 70:16

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Belov.

Additional information

Contribution to ICMAT 2007, Symposium K: Nanostructured and bulk materials for electrochemical power sources, July 1–6, 2007, Singapore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belov, D., Yang, MH. Failure mechanism of Li-ion battery at overcharge conditions. J Solid State Electrochem 12, 885–894 (2008). https://doi.org/10.1007/s10008-007-0449-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-007-0449-3

Keywords

Navigation