Skip to main content

Advertisement

Log in

Recent advances of overcharge investigation of lithium-ion batteries

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Lithium-ion batteries have been widely used in the power-driven system and energy storage system, while overcharge safety for high-capacity and high-power lithium-ion batteries has been constantly concerned all over the world due to the thermal runaway problems by overcharge occurred in recent years. Therefore, it is very important to study the thermal runaway mechanism and improve the safety of the battery during overcharge. In this work, depending on the external appearance, voltage, and temperature changes, the whole overcharge to TR process was divided into 5 stages. By analyzing the side reactions in five stages, the mechanism of heat production during overcharge is summarized, and the order of heat generation is QCa+An > Qanode > Qelectrolyte > Qcathode > QSEI > QISC. Key factors for battery overcharge safety, such as cathode materials, electrolyte safety, and charging current are concluded in this review. Compared to external protection devices (such as BMS, OSD, CID), the internal protection of overcharge additives are more effective. A complex polymer with aromatic functional groups, epoxy or propionate, will become a hot spot in the research of overcharge additives for lithium-ion batteries. This review is expected to offer effective overcharge safety strategies and promote the development of lithium-ion battery with high-energy density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig. 6
Fig. 7
Fig. 8
Fig.9

Similar content being viewed by others

Abbreviations

VO :

The initial value of voltage (V)

Vip :

Voltage value of inflection point of voltage profile (V)

Vp :

Voltage value of voltage plateau (V)

Vcr :

The crest voltage of voltage curve (V)

TO :

Ambient temperature (℃)

TA :

The temperature of the Vip

TB :

The temperature of the Vp

TONSET :

The onset temperature of TR and the start temperature of stage V

Tmax:

The maximum surface temperature of the cell during thermal runaway

Q:

The total heat

Qside :

The side reaction energy

Qchem :

The heat from the released chemical energy

Qele :

The released electrical energy

Qp :

The heat dissipation

Qrev :

The reversible entropy heat

Qohm:

Joule heat

LTO:

Li4Ti5O12 cathode materials

LCO:

LiCoO2 cathode materials

NCA:

LiNi0.8Co0.15Al0.05O2 cathode materials

LFP:

LiFePO4 cathode materials

NCM111:

Li(NiCoMn)1/3O2 cathode materials

MCMB:

Artificial graphite

MAG10:

Artificial graphite

References

  1. Huang WS, Feng XN, Han XB, Zhang WF, Jiang FC (2021) Questions and answers relating to lithium-ion battery safety issues. Cell Rep Phys Sci 2:100285. https://doi.org/10.1016/j.xcrp.2020.100285

    Article  CAS  Google Scholar 

  2. Zaghib K, Dube J, Dallaire A, Galoustov K, Guerfifi A, Ramanathan M, Benmayza A, Prakash J, Mauger A, Julien CM (2012) Enhanced thermal safety and high power performance of carbon-coated LiFePO4 olivine cathode for lithium-ion batteries. J Power Sources 219:36–44. https://doi.org/10.1016/j.jpowsour.2012.05.018

    Article  CAS  Google Scholar 

  3. Zhu XQ, Wang H, Wang X, Gao YF, Allu S, Cakmak E, Wang ZP (2020) Internal short circuit and failure mechanisms of lithium-ion pouch cells under mechanical indentation abuse conditions: an experimental study. J Power Sources 455:227939. https://doi.org/10.1016/j.jpowsour.2020.227939

    Article  CAS  Google Scholar 

  4. ZhuXQ WH, Allu S, Gao YF, Cakmak E, Hopkins EJ, Veith GM, Wang ZP (2020) Investigation on capacity loss mechanisms of lithium-ion pouch cells under mechanical indentation conditions. J Power Sources 465:228314. https://doi.org/10.1016/j.jpowsour.2020.228314

    Article  CAS  Google Scholar 

  5. Wen JW, Yan Y, Chen CH (2012) A review on lithium-ion batteries safety issues: existing problems and possible solutions. Mater Express 2:197–212. https://doi.org/10.1166/mex.2012.1075

    Article  CAS  Google Scholar 

  6. Lyu P, Liu XJ, Qu J, Zhao T, Huo YT, Qu ZG, Rao ZH (2020) Recent advances of thermal safety of lithium ion battery for energy storage. Energy Storage Materials 31:195–220. https://doi.org/10.1016/j.ensm.2020.06.042

    Article  Google Scholar 

  7. Zeng YQ, Wu K, Wang DY, Wang ZX, Chen LQ (2006) Overcharge investigation of lithium-ion polymer batteries. J Power Sources 160:1302–1307. https://doi.org/10.1016/j.jpowsour.2006.02.009

    Article  CAS  Google Scholar 

  8. Chen SC, Wang ZR, Yan W (2020) Identification and characteristic analysis of powder ejected from a lithium ion battery during thermal runaway at elevated temperatures. J Hazard Mater 400:123169. https://doi.org/10.1016/j.jhazmat.2020.123169

    Article  CAS  PubMed  Google Scholar 

  9. Beletskii EV, Fedorova AA, Lukyanov DA, Kalnin AY, Ershov VA, Danilov SE, Spiridonova DV, Alekseeva EV, Levin OV (2021) Switchable resistance conducting-polymer layer for Li-ion battery overcharge protection. J Power Sources 490:229548. https://doi.org/10.1016/j.jpowsour.2021.229548

    Article  CAS  Google Scholar 

  10. Doh CH, Kim DH, Kim HS, Shin HM, Jeong YD, Moon SI, Jin BS, Eom SW, Kim HS, Kim KW, Oh DH, Veluchamy A (2008) Thermal and electrochemical behaviour of C/LixCoO2 cell during safety test. J Power Sources 175:881–885. https://doi.org/10.1016/j.jpowsour.2007.09.102

    Article  CAS  Google Scholar 

  11. Lin P, Jin P, Hong J, Wang Z (2020) Battery voltage and state of power prediction based on an improved novel polarization voltage model. Energy Rep 6:2299–2308. https://doi.org/10.1016/j.egyr.2020.08.014

    Article  Google Scholar 

  12. Rowden B, Nuria GA (2020) A review of gas evolution in lithiumion batteries. Energy Rep 6:10–18. https://doi.org/10.1016/j.egyr.2020.02.022

    Article  Google Scholar 

  13. Wang SJ, Rafiz K, Liu JL, Jin Y, JerryY LS (2020) Effects of lithium dendrites on thermal runaway and gassing of LiFePO4 batteries. Sustain Energy Fuels 4:2342–2351. https://doi.org/10.1039/d0se00027b

    Article  CAS  Google Scholar 

  14. Yuan L, Dubaniewicz T, Zlochower Z, Thomas R, Naseem R (2020) Experimental study on thermal runaway and vented gases of lithium-ion cells. Process Saf Environ Prot 144:186–192. https://doi.org/10.1016/j.psep.2020.07.028

    Article  CAS  Google Scholar 

  15. Liu H, Cheng XB, ChongY YH, Huang JQ, Zhang Q (2021) Advanced electrode processing of lithium ion batteries: a review of powder technology in battery fabrication. Particuology 57:56–71. https://doi.org/10.1016/j.partic.2020.12.003

    Article  CAS  Google Scholar 

  16. Ouyang MG, Ren DS, Lu L, Li JQ, Feng XN, Han XB, Liu GM (2015) Overcharge-induced capacity fading analysis for large format lithium-ion batteries with LiyNi1/3Co1/3Mn1/3O2 - LiyMn2O4 composite cathode. J Power Sources 279:626–635

    Article  CAS  Google Scholar 

  17. Li C, Zhang HP, Fu LJ, Liu H, Wu YP, Rahm E, Holze R, Wu HQ (2006) Cathode materials modified by surface coating for lithium ion batteries. Electrochim Acta 51:3872–3883. https://doi.org/10.1016/j.electacta.2005.11.015

    Article  CAS  Google Scholar 

  18. Zhu XQ, Wang ZB, Wang YT, Wang H, Wang C, Tong L, Yi M (2019) Overcharge investigation of large format lithium-ion pouch cells with Li(Ni0.6Co0.2Mn0.2)O2 cathode for electric vehicles: thermal runaway features and safety management method. Energy 169:868–880. https://doi.org/10.1016/j.energy.2018.12.041

    Article  CAS  Google Scholar 

  19. Mao N, Wang ZR, Chung YH, Shu CM (2019) Overcharge cycling effect on the thermal behavior, structure, and material of lithium-ion batteries. Appl Therm Eng 163:114147. https://doi.org/10.1016/j.applthermaleng.2019.114147

    Article  CAS  Google Scholar 

  20. Wang Z, Yuan J, Zhu X, Wang H, Huang L, Wang Y (2021) Overcharge -to-thermal-runaway behavior and safety assessment of commercial lithium-ion cells with different cathode materials: a comparison study. J Energy Chem 55:484–498. https://doi.org/10.1016/j.jechem.2020.07.028

    Article  Google Scholar 

  21. Huang L, Zhang Z, Wang Z, Zhang L, Zhu X, David DD (2019) Thermal runaway behavior during overcharge for large-format lithium-ion batteries with different packaging patterns. J Energy Storage 25:100811. https://doi.org/10.1016/j.est.2019.100811

    Article  Google Scholar 

  22. Zhitao E, Guo H, Yan G, Wang J, Feng R, Wang Z, Li X (2021) Evolution of the morphology structural and thermal stability of LiCoO2 during overcharge. J Energy Chem 55:524–532. https://doi.org/10.1016/j.jechem.2020.06.071

  23. Choudhari VG, Dhoble DAS, Sathe TM (2020) A review on effect of heat generation and various thermal management systems for lithium ion battery used for electric vehicle. J Energy Storage 32:101729. https://doi.org/10.1016/j.est.2020.101729

    Article  Google Scholar 

  24. Ren D, Feng X, Lu L, Ouyang M, Zheng S, Li F, He X (2017) An electrochemical-thermal coupled overcharge-to-thermal-runaway model for lithium ion battery. J Power Sources 364:328–340. https://doi.org/10.1016/j.jpowsour.2017.08.035

    Article  CAS  Google Scholar 

  25. Ren D, Feng X, Lu L, Li J, Ouyang M (2019) Comparison of the overcharge behaviors of lithium-ion batteries under different test conditions. Energy Procedia 158: 4921–4926 http://creativecommons.org/licenses/by-nc-nd/4.0.

  26. Belov D, Yang M (2008) Investigation of the kinetic mechanism in overcharge process for Li-ion battery. Solid State Ionics 179:1816–1821. https://doi.org/10.1016/j.ssi.2008.04.031

    Article  CAS  Google Scholar 

  27. Feng XN, Ouyang MG, Liu X et al (2018) Thermal runaway mechanism of lithium ion battery for electric vehicles. Energy Storage Mater 10:246–267. https://doi.org/10.1016/j.ensm.2017.05.013

    Article  Google Scholar 

  28. Burns JC, Stevens DA, Dahn JR (2015) In-situ detection of lithium plating using high precision coulometry. J Electrochem Soc 162:A959–A964 https://iopscience.iop.org/article/https://doi.org/10.1149/2.0621506jes

  29. Doyle M, Fuller TF, Newman J (2020) Modeling of galvanostatic charge and discharge of the lithium polymer insertion cell. J Electrochem Soc 140(1993):1526–1533. https://doi.org/10.1149/1.2221597

    Article  Google Scholar 

  30. Doyle M, Newman J, Gozdz AS, Schmutz CN, Tarascon JM (1996) Comparison of modeling predictions with experimental data from plastic lithium ion cells. J Electrochem Soc 143:1890–1903. https://doi.org/10.1149/1.1836921

    Article  Google Scholar 

  31. Mei WX, Zhang L, Sun JH, Wang QS (2020) Experimental and numerical methods to investigate the overcharge caused lithium plating for lithium ion battery. Energy Storage Mater 32:91–104. https://doi.org/10.1016/j.ensm.2020.06.021

    Article  Google Scholar 

  32. Fleischhammer M, Waldmann T, Bisle G, Hogg B (2015) Interaction of cyclic ageing at high-rate and low temperatures and safety in lithium-ion batteries. J Power Sources 274:432–439. https://doi.org/10.1016/j.jpowsour.2014.08.135

    Article  CAS  Google Scholar 

  33. Chen C, Wei Y, Zhao Z, Zou Y, Luo D (2019) Investigation of the swelling failure of lithium-ion battery packs at low temperatures using 2D /3D X-ray computed tomography. Electrochim Acta 305:65–71. https://doi.org/10.1016/j.electacta.2019.03.038

    Article  CAS  Google Scholar 

  34. Belov D, Yang MH (2008) Failure mechanism of Li-ion battery at overcharge conditions. J Solid State Electrochem 12: 885–894 https://link.springer.com/article/https://doi.org/10.1007/s10008-007-0449-3.

  35. Tang P, Albertus P, Newman J (2009) Two-dimensional modeling of lithium deposition during cell charging. J Electrochem Soc 156:A390–A399 https://iopscience.iop.org/article/https://doi.org/10.1149/1.3095513.

  36. Fernandes T, Bry A, De S (2018) Identification and quantification of gases emitted during abuse tests by overcharge of a commercial Li-ion battery. J Power Sources 389:106–119. https://doi.org/10.1016/j.jpowsour.2018.03.034

    Article  CAS  Google Scholar 

  37. Ohsaki T, Kishi T, Kuboki T, Takami N, Shimura N, Sato Y, Sekino M, Satoh A (2005) Overcharge reaction of lithium-ion batteries. Journal of Power Sources 146 : 97–100 https://doi.org/10.1016/j.jpowsour.2005.03.105.

  38. Yang Y, Wang ZR, Guo PK (2021) Carbon oxides emissions from lithium-ion batteries under thermal runaway from measurements and predictive mode. J Energy Storage 33:101863. https://doi.org/10.1016/j.est.2020.101863

    Article  Google Scholar 

  39. Petibon R, Rotemund LM, Dahn JR (2015) Evaluation of phenyl carbonates as electrolyte additives in lithium-ion batteries. J Power Sources 287:184–195. https://doi.org/10.1016/j.jpowsour.2015.04.012

    Article  CAS  Google Scholar 

  40. Gachot G, Ribière P, Mathiron D, Grugeon S, Armand M, Leriche J, Pilard S, Laruelle S (2011) Gas chromatography/mass spectrometry as a suitable tool for the Li-ion battery electrolyte degradation mechanisms study. Anal Chem 83:478–485. https://doi.org/10.1021/ac101948u

    Article  CAS  PubMed  Google Scholar 

  41. Mogi R, Inaba M, Iriyama IY, Abe T, Ogumi Z (2003) Study on the decomposition mechanism of alkyl carbonate on lithium metal by pyrolysis-gas chromatography-mass spectroscopy. J Power Sources 119–121:597–603. https://doi.org/10.1016/S0378-7753(03)00302-1

    Article  CAS  Google Scholar 

  42. Renfrew SE, McCloskey BD (2017) Residual lithium carbonate predominantly accounts for first cycle CO2 and CO outgassing of li-stoichiometric and Li-rich layered transition-metal oxides. J Am Chem Soc 139:17853–17860. https://doi.org/10.1021/jacs.7b08461

    Article  CAS  PubMed  Google Scholar 

  43. Metzger M, Marino C, Sicklinger J, Haering DA, Gasteiger HA (2015) Anodic oxidation of conductive carbon and ethylene carbonate in high-voltage Li-ion batteries quantified by on-line electrochemical mass spectrometry. J Electrochem Soc 162:A1123-1134. https://doi.org/10.1149/2.0951506jes

    Article  CAS  Google Scholar 

  44. Yang Y, Ramaswamy SG, Jakoby WB (1998) Enzymatic hydrolysis of organic cyclic carbonates. J Biol Chem 273:7814–7817. https://doi.org/10.1074/jbc.273.14.7814

    Article  CAS  PubMed  Google Scholar 

  45. Yuan Q, Zhao F, Wang W, Zhao Y, Liang Z, Yan D (2015) Overcharge failure investigation of lithium-ion batteries. Electrochim Acta 178:682–688. https://doi.org/10.1016/j.electacta.2015.07.147

    Article  CAS  Google Scholar 

  46. Kumai k, Miyashiro H, Kobayashi Y, Takei K, Ishikawa R (1999) Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell. J Power Sources 81–82:715–719.PII: S0378- 7753 98 00234–1

  47. Ye J, Chen H, Wang Q, Huang P, Sun J, Lo S (2016) Thermal behavior and failure mechanism of lithium ion cells during overcharge under adiabatic conditions. Appl Energy 182:464–474. https://doi.org/10.1016/j.apenergy.2016.08.124

    Article  CAS  Google Scholar 

  48. Li H, Duan QL, Zhao CP, Huang ZH, Wang QS (2019) Experimental investigation on the thermal runaway and its propagation in the large format battery module with i(Ni1/3Co1/3Mn1/3)O2 as cathode. J Hazard Mater 375:241–254. https://doi.org/10.1016/j.jhazmat.2019.03.116

    Article  CAS  PubMed  Google Scholar 

  49. Feng XN, Fang MM, He X, Ouyang MG, Lu LG, Wang H, Zhang MX (2014) Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry. J Power Sources 255:294–301. https://doi.org/10.1016/j.jpowsour.2014.01.005

    Article  CAS  Google Scholar 

  50. Feng X, He X, Ouyang M, Wang L, Lu L, Ren D, Santhanagopalan S (2018) A coupled electrochemical-thermal failure model for predicting the thermal runaway behavior of lithium-ion batteries. J Electrochem Soc 165:A3748–A3765. https://doi.org/10.1149/2.0311816jes

    Article  CAS  Google Scholar 

  51. Xu K, Zhuang GV, Allen JL, Lee U, Zhang SS, Ross PN Jr, Jow TR (2006) Syntheses and characterization of lithium alkyl mono- and dicarbonates as components of surface films in li-ion batteries. J Phys Chem B 110:7708–7719. https://doi.org/10.1021/jp0601522

    Article  CAS  PubMed  Google Scholar 

  52. Browning KL, Baggetto L, Unocic RR, Dudney NJ, Veith GM (2013) Gas evolution from cathode materials: a pathway to solvent decomposition concomitant to SEI formation. J Power Sources 239:341–346. https://doi.org/10.1016/j.jpowsour.2013.03.118

    Article  CAS  Google Scholar 

  53. Richard MN, Dahn JR (1999) Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte I experimental. J Electrochem Soc 146:2068–2077. https://doi.org/10.1016/S0140-6701(00)96499-3

    Article  CAS  Google Scholar 

  54. Liao Z, Zhang S, Li K, Zhang G, Habetler TG (2019) A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries. J Power Sources 436:226879. https://doi.org/10.1016/j.jpowsour.2019.226879

    Article  CAS  Google Scholar 

  55. Zhu X, Wang Z, Wang C, Huang L (2018) Overcharge investigation of large format lithium-ion pouch cells with Li(Ni0.6Co0.2Mn0.2)O2 cathode for electric vehicles: degradation and failure mechanisms. J Electrochem Soc 165:A3613–A3629. https://doi.org/10.1149/2.0161816jes

    Article  CAS  Google Scholar 

  56. Spotnitz R, Franklin J (2003) Abuse behavior of high-power, lithium-ion cells. J Power Sources 113:81–100. https://doi.org/10.1016/S0378-7753(02)00488-3

    Article  CAS  Google Scholar 

  57. Jung R, Metzger MF, Stinner C, Gasteiger H (2017) Oxygen release and its effect on the cycling stability of LiNixMnyCozO2(NMC) cathode materials for Li-ion batteries. J Electrochem Soc 164:A1361–A1377. https://doi.org/10.1149/2.0021707jes

    Article  CAS  Google Scholar 

  58. Aurbach D, Gofer Y, Ben-Zion M, Aped P (1992) The behaviour of lithium electrodes in propylene and ethylene carbonate: Te major factors that influence Li cycling efficiency. J Electroanal Chem 339:451–471. https://doi.org/10.1016/0022-0728(92)80467-I

    Article  CAS  Google Scholar 

  59. Pasquier AD, Disma F, Bowmer T (1998) Differential scanning calorimetry study of the reactivity of carbon anodes in plastic li-ion batteries. J Electrochem Soc 145:472–477. https://doi.org/10.1016/S0140-6701(98)93828-0

    Article  Google Scholar 

  60. Stenzel YP, B€orner M, Preibisch Y, Winter M, Nowak S, (2019) Thermal profiling o lithium ion battery electrodes at different states of charge and aging conditions. J Power Sources 433:226709. https://doi.org/10.1016/j.jpowsour.2019.226709

    Article  CAS  Google Scholar 

  61. Liu X, Ren D, Hsu H, He X, Amine K, Ouyang M (2018) Thermal runaway of lithium-ion batteries without internal short circuit. Joule 2:2047–2064. https://doi.org/10.1016/j.joule.2018.06.015

    Article  CAS  Google Scholar 

  62. Wang HY, Tang AD, Luang HK (2011) Oxygen evolution in overcharged LixNi1/3Co1/3Mn1/3O2 electrode and its thermal analysis kinetics. Chin J Chem 29:1583–1588. https://doi.org/10.1002/cjoc.201180284

    Article  CAS  Google Scholar 

  63. Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18 :252–264 ://doi.org/https://doi.org/10.1002/cjoc.201180284.

  64. Wang Q, Jiang L, Yu Y, Sun J (2019) Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy 55:93–114. https://doi.org/10.1016/j.nanoen.2018.10.035

    Article  CAS  Google Scholar 

  65. Wang QS, Ping P, Zhao XJ, Chu GQ, Sun JH, Chen CH (2012) Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources 208:210–224. https://doi.org/10.1016/j.jpowsour.2012.02.038

  66. Pasquier AD, Wang Y, Weyhe R, Friedrich B (2018) Gas generation measurement and evaluation during mechanical processing and thermal treatment of spent Li-ion batteries. Waste Manage 84:102–111. https://doi.org/10.1016/j.wasman.2018.11.029

    Article  CAS  Google Scholar 

  67. Liu J, Duan Q, Feng L, Ma M, Sun J, Wang Q (2020) Capacity fading and thermal stability of LiNixCoyMnzO2 /graphite battery after overcharging.J Energy Storage 29 :101397 https://doi.org/10.1016/j.est.2020.101397.

  68. Röder P, Stiaszny B, Ziegler J, Lagaly NP, Wiemhöfer HD (2014) The impact of calendar aging on the thermal stability of a LiMn2O4-Li(Ni1/3Mn1/3Co1/3)O2/graphite lithium-ion cell. J Power Sources 268:315–325. https://doi.org/10.1016/j.jpowsour.2014.06.040

    Article  CAS  Google Scholar 

  69. Sloop SE, Kerr JB, Kinoshita K (2003) The role of Li-ion battery electrolyte reactivity in performance decline and self-discharge. J Power Sources 119 :330–337, https://doi.org/10.1016/S0378-7753(03)00149-6.

  70. Kawamura T, Kimura A, Egashira M, Okada S, Yamaki JI (2002) Thermal stability of alkyl carbonate mixed- solvent electrolytes for lithium ion cells. J Power Sources 104:260–264,PII: 0378–7753(01)00960–0

  71. Li J, Wang GX, Xu ZM (2016) Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries. J Hazard Mater 302:97–104. https://doi.org/10.1016/j.jhazmat.2015.09.050

    Article  CAS  PubMed  Google Scholar 

  72. Botte GG, White RE, Zhang Z (2001) Thermal stability of LiPF6–EC: EMC electrolyte for lithium ion batteries. J Power Sources 97:570–575. https://doi.org/10.1016/S0378-7753(01)00746-7

    Article  Google Scholar 

  73. Wong AY, Lam F (2002) Study of selected thermal characteristics of polypropylene/polyethylene binary blends using DSC and TGA.J Polym Test 21 :691–696 https://doi.org/10.1016/S0142-9418(01)00144-1

  74. Yamada A, Chung SC, Hinokuma K (2001) Optimized LiFePO4 for lithium battery cathodes. J Electrochem Soc 148:A224–A229 101149/1.1348257.

  75. Wong AY, Lam, (2002) Study of selected thermal characteristics of polypropylene/polyethylene binary blends using DSC and TGA. J Polym Test 21:691–696. https://doi.org/10.1016/S0142-9418(01)00144-1

    Article  CAS  Google Scholar 

  76. Park JH, Kim JM, Lee CK, Lee SY (2014) Mixed ion/electron-conductive protective soft nanomatter-based conformal surface modification of lithium-ion battery cathode materials. J Power Sources 263:209–216. https://doi.org/10.1016/j.jpowsour.2014.04.028

    Article  CAS  Google Scholar 

  77. Belharouak I, Lu W, Vissers D, Amine K (2006) Safety characteristics of Li(Ni0.8Co0.15Al0.05)O2 and Li(Ni1/3Co1/3Mn1/3)O2. Electrochem Commun 8:329–335. https://doi.org/10.1016/j.elecom.2005.12.007

    Article  CAS  Google Scholar 

  78. Belharouak I, Sun YK, Lu W, Amine K (2007) On the safety of the Li4Ti5O12/LiMn2O4 lithium-ion battery system. J Electrochem Soc 154 :A1083–A1087 106.114.76.65 on 07/04/2021.

  79. Park YS, Bang HJ, Oh SM, Lee SYK, SM, (2009) Effect of carbon coating on thermal stability of natural graphite spheres used as anode materials in lithium-ion batteries. J Power Sources 190:553–557. https://doi.org/10.1016/j.jpowsour.2009.01.067

    Article  CAS  Google Scholar 

  80. Tanaka H, Osawa T, Moriyoshi Y, Kurihara M, Maruyama S, Ishigaki T (2004) Improvement of the anode performance of graphite particles through surface modification in RF thermal plasma. Thin Solid Films 7:209–216. https://doi.org/10.1016/j.tsf.2003.12.024

    Article  CAS  Google Scholar 

  81. Roth EP, Doughty DH (2004) Thermal abuse performance of high-power 18650 Li-ion cells. J Power Sources 8:308–318. https://doi.org/10.1016/j.jpowsour.2003.09.068

    Article  CAS  Google Scholar 

  82. Zheng S, Wang L, Feng X (2018) Probing the heat sources during thermal runaway process by thermal analysis of different battery chemistries. J Power Sources 378:527–536. https://doi.org/10.1016/j.jpowsour.2017.12.050

    Article  CAS  Google Scholar 

  83. Eom J, Kim MG, Cho J (2008) Storage characteristics of LiNi0.8Co0.1 + x Mn0.1 − x O2 (x = 0, 0.03, and 0.06) cathode materials for lithium batteries. J Electrochem Soc 155:A239–A245. https://doi.org/10.1149/1.2830946

    Article  CAS  Google Scholar 

  84. Noh HJ, Youn S, Yoon CS, Sun YK (2013) Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J Power Sources 233:121–130. https://doi.org/10.1016/j.jpowsour.2013.01.063

    Article  CAS  Google Scholar 

  85. Venkatraman S, Choi J, Manthiram A (2004) Factors influencing the chemical lithium extraction rate from layered LiNi1−y−zCoyMnzO2 cathodes. Electrochem Commun 6:832–837. https://doi.org/10.1016/j.elecom.2004.06.004

    Article  CAS  Google Scholar 

  86. Heubner C, Schneider M, Lamme C, Michaelis A (2015) Local heat generation in a single stack lithium ion battery cell. Electrochim. Acta 186 : 404–412 10.1016 /j.electacta. 2015.10.182.

  87. Xiao M, Choe SY (2013) Theoretical and experimental analysis of heat generations of a pouch type LiMn2O4/carbon high power Li-polymer battery. J Power Sources 241:46–55. https://doi.org/10.1016/j.jpowsour.2013.04.062

    Article  CAS  Google Scholar 

  88. Malik M, Mathew M, Dincer I, Rosen MA, Fowler M (2018) Experimental investigation and thermal modelling of a series connected LiFePO4 battery pack. Int J Therm Sci 132:466–477. https://doi.org/10.1016/j.ijthermalsci.2018.06.025

    Article  CAS  Google Scholar 

  89. Giel H, Henriques D, Bourne G, Markus T (2018) Investigation of the generation of a commercial 2032 (LiCoO2) coin cell with a novel differential scanning battery calorimeter. J Power Sources 390:116–126. https://doi.org/10.1016/j.jpowsour.2018.04.017

    Article  CAS  Google Scholar 

  90. Hosseinzadeh E, Genieser R, Worwood D, Barai A, Marco J, Jenningsl PA (2018) Systematic approach for electrochemical-thermal modelling of a large format lithium-ion battery for electric vehicle application. J Power Sources 382:77–94. https://doi.org/10.1016/j.jpowsour.2018.02.027

    Article  CAS  Google Scholar 

  91. Xu X, Deng S, Wang H, et al (2017) Research progress in improving the cycling stability of high-voltage Li Ni0.5Mn1.5O4 cathode in lithium-ion battery. Nano-micro Letters 9: 22 https://doi.org/10.1007/s40820-016-0123-3

  92. Manthiram A, Chemelewski K, Lee ES (2014) A perspective on the high-voltage Li Mn1.5Ni0.5O4 spinel cathode for lithium-ion batteries. Energy Environ Sci 7:1339–1350. https://doi.org/10.1039/C3EE42981D

    Article  CAS  Google Scholar 

  93. Bai Y, Li L, Li Y, Chen GH, Zhao HC, Wang ZH, Wu C, Ma HY, Wang XQ, Cui HY, Zhou J (2019) Reversible and irreversible heat generation of NCA/Si–C pouch cell during electrochemical energy-storage process. J Energy Chem 29:95–102. https://doi.org/10.1016/j.jechem.2018.02.016

    Article  Google Scholar 

  94. Liang C, Jiang L, Wang Q, Sun J (2020) Dynamic heat generation of LiNi0.5Co0.2Mn0.3O2 half cell under cycling based on an in situ microcalorimetry. Fire Technol 2387–2440 https://doi.org/10.1007/s10694-020-00956-4.

  95. Qi C, Zhu Y, Gao F (2018) Mathematical model for thermal behavior of lithium ion battery pack under overcharge. Int J Heat Mass Transfer 124:552–563. https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.100

    Article  CAS  Google Scholar 

  96. Hyundai Motor Company, overcharge safety device. USPTO 20180159185,2018

  97. Li W, Crompton KR, Hacker C (2020) Comparison of current interrupt device and vent design for 18650 format lithium-ion battery caps. J Energy Storage 32:101890. https://doi.org/10.1016/j.est.2020.101890

    Article  Google Scholar 

  98. Dai HF, Zhang XL, Wei XZ, Sun ZC, Wang ZC, Hu F (2013) Cell-BMS validation with a hardware-in-the-loop simulation of lithium-ion battery cells for electric vehicles. Int J Electr Power Energy Syst 52:174–184. https://doi.org/10.1016/j.ijepes.2013.03.037

    Article  Google Scholar 

  99. Re T (2020) Electrolyte additives for improved lithium-ion battery performance and overcharge protection. Curr Opin Electrochem 21:22–30. https://doi.org/10.1016/j.coelec.2020.01.001

    Article  CAS  Google Scholar 

  100. Wang ZY, Jiang LH, Liang C, Zhao CP, Wei ZS, Wang QS (2020) Effects of 3-fluoroanisol as an electrolyte additive on enhancing the overcharge endurance and thermal stability of lithium-ion batteries. J Electrochem Soc 167: 30517 https://doi.org/10.1149/1945-7111/ abb8b2

  101. Golovin MN, Wilkinson DP, Dudley JT, Holonko D, Hoo S (1992) Applications of metallocenes in rechargeable lithium batteries for overcharge protection. J Electrochem Soc 139:5–10. https://doi.org/10.1023/A:1024039302020

    Article  CAS  Google Scholar 

  102. Ding Y, Zhao Y, Li Y, Goodenough JB, Yu G (2017) A high-performance all-metallocene-based, non-aqueous redox flow battery. Energy Environ Sci 10:491–497. https://doi.org/10.1039/c6ee02057g

    Article  CAS  Google Scholar 

  103. Forgie JC, Khakani SE, MacNeil DD, Rochefort D (2013) Electrochemical characterisation of a lithium-ion battery electrolyte based on mixtures of carbonates with a ferrocene-functionalised imidazolium electroactive ionic liquid. Phys Chem Chem Phys 15(2013):7713–7721. https://doi.org/10.1039/C3CP50560J

    Article  CAS  Google Scholar 

  104. Abraham K M, Pasquariello D M. Overcharge protection of secondary non-aqueous batteries[P].CA1306003,1992–08–04

  105. Abraham KM, Pasquariello DM, Willstaedt EB (1990) n-Butylferrocene for overcharge protection of secondary lithium batteries. J Electrochem Soc 137:1856–1861

    Article  CAS  Google Scholar 

  106. Ates MN, Allen CJ, Mukerjee S, Abraham K (2012) Electronic effects of substituents on redox shuttles for overcharge protection of Li-ion batteries. J Electrochem Soc 159:A1057–A1064. https://doi.org/10.1149/2.064207jes

    Article  CAS  Google Scholar 

  107. Cha C, Ai X, Yang H (1995) Polypyridine complexes of iron used as redox shuttles for overcharge protection of secondary lithium batteries. J Power Sources 54:255–258. https://doi.org/10.1016/0378-7753(94)02079-I

    Article  CAS  Google Scholar 

  108. Abraham K M, Rohan J F, Foo C C, et al. Chemical overcharge protection of lithium and lithium-ion secondary batteries[P].EP 0825663, 1998–02–25.

  109. Odom SA, Ergun S, Poudel PP, Parkin SR (2014), A fast, inexpensive method for predicting overcharge performance in lithium-ion batteries Energy Environ Sci 7:760–767 https://doi.org/10.1039/C3EE42305K

  110. Kerr J B, Tia M. Electrochemical storage cell containing a substituted anisole or di-anisole redox shuttle additive for overcharge protection and suitable for use in liquid organic and solid polymer electrolytes[P].US 6045952, 2000–04–04

  111. Chen Z, Qin Y, Amine K (2009) Redox shuttles for safer lithium-ion batteries. Electrochim Acta 54:5605–5613. https://doi.org/10.1016/j.electacta.2009.05.017

    Article  CAS  Google Scholar 

  112. Behl WK, Chin DT (1998) Electrochemical overcharge protection of rechargeable lithium batteries: II Effect of lithium iodide-iodine additives on the behavior of lithium electrode in LiAsF6-tetrahydrofuran solutions. J Electrochem Soc 135:21–25. https://doi.org/10.1149/1.2095558

    Article  Google Scholar 

  113. Behl WK, Chin DT (1988) Electrochemical overcharge protection of rechargeable lithium batteries: I Kinetics of iodide/tri-iodide/iodine redox reactions on platinum in LiAsF6-tetrahydrofuran solutions. J Electrochem Soc 135:16–21. https://doi.org/10.1149/1.2095545

    Article  CAS  Google Scholar 

  114. Allen J (2020) Review of polymers in the prevention of thermal runaway in lithium-ion batteries. Energy Rep 6:217–224. https://doi.org/10.1016/j.egyr.2020.03.027

    Article  Google Scholar 

  115. Buhrmester C, Chen J, Moshurchak L, Jiang J, Wang RL, Dahn J (2005) Studies of aromatic redox shuttle additives for LiFePO4-based Li-ion cells. J Electrochem Soc 152:A2390–A2399. https://doi.org/10.1149/1.2098265

    Article  CAS  Google Scholar 

  116. Huang J, Shkrob IA, Wang P, Cheng L, Pan B, He M, Liao C, Zhang Z, Curtiss ZL (2015) 1,4-Bis(trimethylsilyl)- 2,5-dimethoxybenzene: a novel redox shuttle additive for overcharge protection in lithium-ion batteries that doubles as a mechanistic chemical probe. J Mater Chem A3:7332–7337. https://doi.org/10.1039/C5TA00899A

    Article  CAS  Google Scholar 

  117. Zhang Z, Zhang L, Schlueter JA, Redfern PC, Curtiss L, Amine K (2010) Understanding the redox shuttle stability of 3,5-di-tert- butyl-1,2-dimethoxybenzene for overcharge protection of lithium-ion batteries. J Power Sources 195: 4957–4962 https://doi.org/10.1016/j.jpowsour.2010.02.0

  118. Zhang L, Zhang Z, Redfern PC, Curtiss LA, Amine K (2012) Molecular engineering towards safer lithium-ion batteries: a highly stable and compatible redox shuttle for overcharge protection. Energy Environ Sci 5:8204–8207. https://doi.org/10.1039/C2EE21977H

    Article  CAS  Google Scholar 

  119. Leonet O, Colmenares LC, Kvasha A, Oyarbide M, Mainar AR, Glossmann T, Blázquez JA, Zhang Z (2018) Improving the safety of lithium-ion battery via a redox shuttle additive 2,5-Di-tert-butyl-1,4-bis(2-methoxyethoxy)benzene (DBBB). ACS Appl Mater Interfaces 10:9216–9219. https://doi.org/10.1021/acsami.8b01298

    Article  CAS  PubMed  Google Scholar 

  120. Matadi BP, Geniès S, Delaille A, Waldmann T, Kasper M, Wohlfahrt MM, Aguesse F, Bekaert E, Jiménez-Gordon I, Daniel L (2017) Effects of biphenyl polymerization on lithium deposition in commercial graphite/NMC lithium-ion pouch-cells during calendar aging at high temperature. J Electrochem Soc 164:A1089–A1097. https://doi.org/10.1149/2.0631706jes

    Article  CAS  Google Scholar 

  121. Huang T, Zheng X, Wang W, Pan Y, Fang G, Wu M (2017) 2-Chloro-4-methoxy)-phenoxy pentafluorocyclotriphosphazene as a safety additive for lithium-ion batteries. Mater Chem Phys 196:310–314. https://doi.org/10.1016/j.matchemphys.2017.05.005

    Article  CAS  Google Scholar 

  122. Vogl U, Schmitz A, Stock C, Badillo JP, Winter GHJ, M, (2014) Investigation of N-ethyl-2-pyrrolidone (NEP) as electrolyte additive in regard to overcharge protecting characteristics. J Electrochem Soc 161:A1407–A1414. https://doi.org/10.1149/2.1021409jes

    Article  CAS  Google Scholar 

  123. Xiao L, Ai X, Cao Y, Yang H (2004) Electrochemical behavior of biphenyl as polymerizable additive for overcharge protection of lithium ion batteries. Electrochim Acta 49:4189–4196. https://doi.org/10.1016/j.electacta.2004.04.013

    Article  CAS  Google Scholar 

  124. Zhang Q, Qiu C, Fu Y, Ma X (2009) Xylene as a new polymerizable additive for overcharge protection of lithium ion batteries. Chin J Chem 27:1459–1463. https://doi.org/10.1002/cjoc.200990245

    Article  CAS  Google Scholar 

  125. Lee H, Lee JH, Ahn S, Kim HJ, Cho JJ (2006) Co-use of cyclohexyl benzene and biphenyl for overcharge protection of lithium-ion batteries. Electrochem Solid-State Lett 9:A307–A310. https://doi.org/10.1149/1.2193072

    Article  CAS  Google Scholar 

  126. Yang W, Yang W, Song A, Gao L, Sun G, Shao G (2017) Pyrrole as a promising electrolyte additive to trap polysulfides for lithium-sulfur batteries. J Power Sources 348:175–182. https://doi.org/10.1016/j.jpowsour.2017.03.008

    Article  CAS  Google Scholar 

  127. Li S, Xia L, ZhangH AX, Yang H, Cao Y (2011) A poly(3-decyl thiophene)-modified separator with self-actuating overcharge protection mechanism for LiFePO4-based lithium ion battery. J Power Sources 196:7021–7024. https://doi.org/10.1016/j.jpowsour.2010.09.111

    Article  CAS  Google Scholar 

  128. Mao H Y, Von S U. Aromatic monomer gassing agents for protecting non-aqueous lithium batteries against overcharge[P].US 5776627,1998–07–07

  129. Abe K, Matsumori Y, Ueki A. Nonaqueous electrolytic solution and lithium secondary batteries [P].EP1361622, 2003–11–12

  130. Roh K, Choi J, Lee J. Electrolyte composition for Lithium secondary battery having high overcharge safety[P]. WO2004040687,2004–05–13

  131. Tobishima S, Ogino Y, Watanabe Y (2003) Influence of electrolyte additives on safety and cycle life of rechargeable lithium cells. J Appl Electrochem 33:143–150. https://doi.org/10.1023/A:1024039302020

    Article  CAS  Google Scholar 

  132. He YB, Liu Q, Tang ZY, Chen YH, Song QS (2007) The cooperative effect of tri(-chloromethyl) phosphate and cyclohexyl benzene on lithium ion batteries. Electrochim Acta 52:3534–3540. https://doi.org/10.1016/j.electacta.2006.10.039

    Article  CAS  Google Scholar 

  133. Chen YH, Tang ZY, Wang L (2006) Aplication of cyclohexyl benzene and triethyl amine for overcharge protection of Li- ion batteries. Chinese Journal of Power Sources30 :829–832

  134. Mao HY, Wainwright DS. Polymerizable additives for making non-aqueous rechargeable lithium batteries safe after overcharge[P]. US 6074776,2000–06–13

  135. Mao HY. Polymerizable aromatic additives for overcharge protection in non-aqueous rechargeable lithium batteries[P].US 5879834,1999–03–09

  136. Ralph OG, Stephan KL, Lutz BL. Overcharge protection of nonaqueous rechargeable lithium batteries by cyano-substituted thiophenes as electrolyte additives[P].US 20040053138,2004–03–18

  137. Hyeong-Gon NS. Polymer electrolyte composition for improving overcharge safety and lithium battery using the same[P].US20030152837,2004–08–14

  138. Feng J, Cao Y, Ai X, Yang H (2008) Tri-(4-methoxythphenyl) phosphate: a new electrolyte additive with both fifire-retardancy and overcharge protection for Li-ion batteries. Electrochim Acta 53:8265–8268. https://doi.org/10.1016/j.electacta.2008.05.024

    Article  CAS  Google Scholar 

  139. Feng J, Lu L (2013) A novel bifunctional additive for safer lithium ion batteries. J Power Sources 243:29–32. https://doi.org/10.1016/j.jpowsour.2013.05.170

    Article  CAS  Google Scholar 

  140. Huang T, Zheng X, Fang G, Pan Y, Wang W, Wu M (2017) (4-Methoxy)-phenoxy pentafluorocyclotriphosphazene as a novel flame retardant and overcharge protection additive for lithium-ion batteries. RSC Adv 7:47775–47780. https://doi.org/10.1039/C7RA09416G

    Article  CAS  Google Scholar 

  141. Feng J, Gao X, Ci L, Xiong S (2016) A novel bifunctional additive for 5 V-class high-voltage lithium ion batteries. RSC Adv 6:7224–7228. https://doi.org/10.1039/C5RA22547G

    Article  CAS  Google Scholar 

  142. Korepp C, Kern W, Lanzer EA (2007) 4-Bromobenzyl isocyanate versus benzyl isocyanate new film-forming electrolyte additives and overcharge protection additives for lithium ion batteries. J Power Sources 174:637–642 0.1016/j.jpowsour.2007.06.142

Download references

Funding

This work was funded by Science and Technology Project of Hebei Education Department (No. ZD2020327).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhong Chen.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y. Recent advances of overcharge investigation of lithium-ion batteries. Ionics 28, 495–514 (2022). https://doi.org/10.1007/s11581-021-04331-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04331-3

Keywords

Navigation