Skip to main content
Log in

Effect of FeO x on the electrocatalytic properties of NiCo2O4 for O2 evolution from alkaline solutions

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Mixtures of NiCo2O4 and FeO x were obtained by thermal decomposition of the nitrates of Ni, Co, and Fe in appropriate proportions. Two series of electrodes were prepared: (1) at constant composition (20 mol% FeO x ) and various calcination temperatures in the range 200 to 480 °C and (2) at constant calcination temperature (300 °C) and various compositions in the whole composition range 0 to 100 mol% FeO x . The oxide layers were characterized by thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, and cyclic voltammetry. Experimental data showed that the layers consist of a mixture of phases in which Fe oxide is present as Fe2O3. The electrocatalytic properties were assessed by means of quasi-stationary potentiostatic current-potential curves for the O2 evolution reaction from alkaline solution. Results have shown that the mechanism of O2 evolution depends on composition moderately. The electrocatalytic activity appears to depend on composition only slightly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Trasatti S (1990) Electrode kinetics and electrocatalysis of hydrogen and oxygen electrode reactions. 4. The oxygen evolution reaction. In: Wendt H (ed) Electrochemical hydrogen technologies. Elsevier, Amsterdam, pp 104–135

    Google Scholar 

  2. Trasatti S, Lodi G (1981) Oxygen and chlorine evolution at conductive metallic oxide anodes. In: Trasatti S (ed) Electrodes of conductive metallic oxide, Part B. Elsevier, Amsterdam, pp 521–626

    Google Scholar 

  3. Pletcher D, Walsh FC (1990) Industrial electrochemistry, 2nd edn. Chapman & Hall, London, p 260

    Google Scholar 

  4. Nikiforova TG, Petrii OA (2005) Russ J Electrochem 41:118

    Article  CAS  Google Scholar 

  5. Petrii OA, Tsirlina GA (2001) Usp Khim 70:330

    Google Scholar 

  6. Pron’kin SN, Tsirlina GA, Petrii OA, Vassiliev SY (2001) Electrochim Acta 46:2343

    Article  CAS  Google Scholar 

  7. Petrii OA, Safonova TY, Tsirlina GA, Rusanova MY (2000) Electrochim Acta 45:4117

    Article  CAS  Google Scholar 

  8. Petrii OA, Kalinin VD (1999) Russ J Electrochem 35:627

    CAS  Google Scholar 

  9. Wendt H, Plzak V (1990) Electrocatalysis and electrocatalysts for cathodic evolution and anodic oxidation of hydrogen. In: Wendt H (ed) Electrochemical hydrogen technologies. Elsevier, Amsterdam, pp 15–62

    Google Scholar 

  10. Trasatti S (1992) Electrocatalysis of hydrogen evolution: progress in cathode activation. In: Gerischer H, Tobias CW (eds) Advances in electrochemical science and engineering. VCH, Weinheim, pp 1–85

    Google Scholar 

  11. Mahmmood MN, Turner AK, Man MCM, Fogarty PO (1984) Chem Ind 50

  12. Trasatti S (1995) Int J Hydrogen Energy 20:835

    Article  CAS  Google Scholar 

  13. Divisek J, Mergel J, Schmitz H (1990) Int J Hydrogen Energy 15:105

    Article  CAS  Google Scholar 

  14. Ahmad GE, El Shenawy ET (2006) Renew Energy 31:1043

    Article  CAS  Google Scholar 

  15. Miller EL, Rocheleau RE (1997) J Electrochem Soc 144:1995

    Article  CAS  Google Scholar 

  16. El Baydi M, Poillerat G, Rehspringer J-L, Gautier JL, Koenig J-F, Chartier P (1994) J Solid State Chem 109:281

    Article  Google Scholar 

  17. Yang J, Li JB, Lin H, Yang XZ, Tong XG, Guo GF (2006) J Appl Electrochem 36:945

    Article  CAS  Google Scholar 

  18. Miller EL, Rocheleau RE (1997) J Electrochem Soc 144:3072

    Article  CAS  Google Scholar 

  19. Cordoba SI, Carbonio RE, Lopez Teijelo, Macagno VA (1987) Electrochim Acta 32:749

    Article  CAS  Google Scholar 

  20. Krstajić N, Trasatti S (1996) Surface and electrocatalytic properties of NiO x + FeO x mixed oxide electrodes for O2 evolution. In: Adzic RR, Anson FC, Kinoshita K (eds) Oxygen electrochemistry, vol 95-26. The Electrochemical Society, Pennington, pp 155–165

    Google Scholar 

  21. Garavaglia R, Mari CM, Trasatti S (1984) Surf Technol 23:41

    Article  CAS  Google Scholar 

  22. Trasatti S (1999) Interfacial electrochemistry of conductive oxides for electrocatalysis. In: Wieckowski A (ed) Interfacial electrochemistry: theory, practice, applications. Marcel Dekker, New York, pp 769–792

    Google Scholar 

  23. Chi B, Li JB, Han YS, Chen YJ (2004) Int J Hydrogen Energy 29:605

    Article  CAS  Google Scholar 

  24. Serebrennikova I, Birss VI (2000) J Electrochem Soc 147:3614

    Article  CAS  Google Scholar 

  25. Roginskaya YuE, Morozova OV, Lubnin EN, Uilitina YuE, Lopukhova GV, Trasatti S (1977) Langmuir 13:4621

    Article  Google Scholar 

  26. Trasatti S (1980) J Electroanal Chem 111:125

    Article  CAS  Google Scholar 

  27. Trasatti S (1994) Transition metal oxides. Versatile materials for electrocatalysis. In: Lipkowski J, Ross PN (eds) The electrochemistry of novel materials. VCH Publishers Inc, New York, pp 207–295

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Trasatti.

Additional information

Dedicated to Professor Oleg Petrii on the occasion of his 70th birthday on August 24th, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerrini, E., Piozzini, M., Castelli, A. et al. Effect of FeO x on the electrocatalytic properties of NiCo2O4 for O2 evolution from alkaline solutions. J Solid State Electrochem 12, 363–373 (2008). https://doi.org/10.1007/s10008-007-0406-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-007-0406-1

Keywords

Navigation