Skip to main content
Log in

The effect of magnetic fields on the electrodeposition of iron

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of a uniform magnetic field with flux density up to 1 T on the electrodeposition of Fe from sulphate electrolyte has been investigated under different field configurations relative to the electrode surface. Voltammetric and chronoamperometric experiments have been carried out coupled with an electrochemical quartz crystal microbalance for in situ mass change measurements. The structure and morphology of the deposited films were determined by scanning electron microscopy, atomic force microscopy and X-ray diffraction measurements. Results show that, when the magnetic field is applied parallel to the electrode surface, the limiting current density and the deposition rate are increased due to the magnetohydrodynamic effect. The nucleation process is also affected in parallel configuration; the current density of the maximum on the chronoamperograms is decreased, and an additional nucleation step might be observed. This effect is attributed to the hydrodynamic response of the electrochemical system. No significant influence on the electrochemical reaction was observed when a magnetic field was applied perpendicular to the electrode. But in this configuration, the morphology of deposited layers is changed by the magnetic field. The morphology changes are discussed. No effect of the magnetic field on the crystallographic structure was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Tacken RA, Janssen LJJ (1995) J Appl Electrochem 25:1

    Article  CAS  Google Scholar 

  2. Hinds G et al (2001) J Phys Chem B 105:9487

    Article  CAS  Google Scholar 

  3. Shannon JC, Gu ZH, Fahidy TZ (1997) J Electrochem Soc 144:L314

    Article  CAS  Google Scholar 

  4. Lioubashevski O, Katz E, Willner I (2004) J Phys Chem B 108:5778

    Article  CAS  Google Scholar 

  5. Aaboubi O et al (1990) J Electrochem Soc 137:1796

    Article  CAS  Google Scholar 

  6. Devos O et al (1998) J Electrochem Soc 145:401

    Article  CAS  Google Scholar 

  7. O’Reilly C, Hinds G, Coey JMD (2001) J Electrochem Soc 148:C674

    Article  CAS  Google Scholar 

  8. Tabakovic I et al (2003) J Electrochem Soc 150:C635

    Article  CAS  Google Scholar 

  9. Nikolic ND et al (2004) J Magn and Magn Mater 272–276:2436

    Article  Google Scholar 

  10. Uhlemann M, Schlörb H, Msellak K, Chopart JP (2004) J Electrochem Soc 151:C598

    Article  CAS  Google Scholar 

  11. Rabah KL et al (2004) J Electroanal Chem 571:85

    Article  CAS  Google Scholar 

  12. Leventis N, Dass A (2005) J Am Chem Soc 127:4988

    Article  CAS  Google Scholar 

  13. Uhlemann M, Krause A, Chopart JP, Gebert A (2005) J Electrochem Soc 152:C817

    Article  CAS  Google Scholar 

  14. Matsushima H et al (2006) J Electroanal Chem 587:93

    Article  CAS  Google Scholar 

  15. Fahidy TZ (1999) The effect of magnetic fields on electrochemical processes. In: Conway BE et al (ed) Modern aspects of electrochemistry, vol 32. Kluwer/Plenum, New York, pp 333–354

    Google Scholar 

  16. Coey JMD, Hinds G (2001) J Alloys Compd 326:238

    Article  CAS  Google Scholar 

  17. Devos O et al (2000) J Phys Chem A 104:1544

    Article  CAS  Google Scholar 

  18. Aogaki R, Fueki K, Mukaibo T (1975) Denki Kagaku oyobi Kogyo Butsuri Kagaku 43:504

    CAS  Google Scholar 

  19. Leventis N, Gao X (1999) J Phys Chem B 103:5832

    Article  CAS  Google Scholar 

  20. Ragsdale SR, White HS (1999) Anal Chem 71:1923

    Article  CAS  Google Scholar 

  21. Ragsdale SR, Grant KM, White HS (1998) J Am Chem Soc 120:13461

    Article  CAS  Google Scholar 

  22. O’Brien RN, Santhanam KSV (1997) J Appl Electrochem 27:573

    Article  CAS  Google Scholar 

  23. Waskaas M, Kharkats YI (1999) J Phys Chem B 103:4876

    Article  CAS  Google Scholar 

  24. Coey JMD, Rhen FMF, Dunne P, McMurry S (2007) The magnetic concentration gradient force—is it real? J Solid State Electrochem. DOI 10.1007/s10008-006-0254-4

  25. Uhlemann M, Gebert A, Schultz L (2004) Electrochim Acta 49:4127

    Article  Google Scholar 

  26. Osaka T et al (2003) Electrochem Solid-State Lett 6:C35

    Article  Google Scholar 

  27. Vetter KJ (1961) Elektochemische kinetik. Springer, Berlin Heidelberg New York

    Google Scholar 

  28. Wang J (2000) Analytical electrochemistry, 2nd edn. Wiley VCH, New York

    Google Scholar 

  29. Krause A (2005) Electrokristallisation von Kobalt und Kupfer unter Einwirkung homogener Magnetfelder. PhD thesis, TU Dresden

  30. Armstrong RD, Harrison JA (1969) J Electrochem Soc 116:328

    Article  CAS  Google Scholar 

  31. Scharifker B, Hills G (1983) Electrochim Acta 28:879

    Article  CAS  Google Scholar 

  32. Palomar-Pardave M, Gonzalez I, Batina N (2000) J Phys Chem B 104:3545

    Article  CAS  Google Scholar 

  33. Thirsk HR, Harrison JA (1972) A guide to the study of electrode kinetic. Academic, London and New York

    Google Scholar 

  34. Sahari A et al (2006) Catal Today 113:257

    Article  CAS  Google Scholar 

  35. Bento FR, Mascaro LH (2006) Surf Coat Technol 201:1752

    Article  CAS  Google Scholar 

  36. Daltin AL, Chopart JP (2005) The effect of magnetic fields on cuprous oxide electrodeposition. In: Proceedings of 6th International PAMIR Conference on fundamental and applied MHD, vol 2, Rigas Jurmala Latvia, pp 179–182

  37. Palomar-Padave M, Scharifker BR, Arce EM, Romero-Romo M (2005) Electrochim Acta 50:4736

    Article  Google Scholar 

Download references

Acknowledgements

The German Research Foundation (DFG) is gratefully acknowledged for the support of this work in the framework of SFB609 “Elektromagnetische Strömungsbeeinflussung in Metallurgie, Kristallzüchtung und Elektrochemie.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Koza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koza, J., Uhlemann, M., Gebert, A. et al. The effect of magnetic fields on the electrodeposition of iron. J Solid State Electrochem 12, 181–192 (2008). https://doi.org/10.1007/s10008-007-0379-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-007-0379-0

Keywords

Navigation