Skip to main content
Log in

The influence of hydrogen peroxide on carbon monoxide electrooxidation at Pt/C and Pt:Ru/C electrodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Polymer electrolyte fuel cells constitute one of the most important efficiency energy converters for non-centralised uses. However, the use of fuels arising from reformate processes significantly lowers the current efficiency because of anodic catalytic poison coming from adsorbed carbon monoxide (COad). In this work, the influence of the addition of hydrogen peroxide in the flow current is studied, considering the adsorption and electrochemical oxidation of carbon monoxide on carbon-supported Pt (20% Pt/Vulcan) and Pt:Ru (1:1, 20% Pt:Ru/Vulcan) catalysts in 2 M sulphuric acid. The investigation was conducted applying cyclic voltammetry and on-line differential electrochemical mass spectrometry. A series of experiments has been performed to investigate the influence of the temperature as well as the time of contact and the concentration of hydrogen peroxide. Oxidation of COad to carbon dioxide occurs at lower potentials in the presence of hydrogen peroxide. Moreover, it is possible to remove ca. 70% of COad on Pt/C electrodes. On the other hand, for PtRu/C electrodes, similar charge values to those of Pt/C electrodes were obtained for the CO stripping, but the process occurs at more negative potentials. In this case, the effect of partial desorption for COad by interaction with hydrogen peroxide is added to the bifunctional mechanism usually considered for this alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Appleby AJ, Foulkes FR (1989) Fuel cell handbook. Van Remhold, New York

    Google Scholar 

  2. Gottesfeld S, Zawodzinski TA (1997) Advances in electrochemical science and engineering. In: Alkire RC, Gerisher H, Kolb DM, Tobias CW (eds) VCH, Weinheim, p 195

  3. Kordesch K, Simader G (1996) Fuel cells and their applications. VCH, Weinheim

    Google Scholar 

  4. Parsons R, VanderNoot T (1988) J Electroanal Chem 257:9

    Article  CAS  Google Scholar 

  5. Iwasita T (1990) Electrochem science and engineering, vol. 1. In: Gerischer E, Tobias CW (eds) VCH, Weinheim

  6. Vielstich W, Iwasita I, Dalbeck R (1996) Handbook for heterogeneous catalysis. In: Ertl G, Knözinger A (eds). VCH, Weinheim, chap. 3.17

  7. Lamy C, Leger JM, Clavilier J, Parsons R (1983) J Electroanal Chem 150:71

    Article  CAS  Google Scholar 

  8. Sun SG, Clavilier J (1987) J Electroanal Chem 236:95

    Article  CAS  Google Scholar 

  9. Chang SC, Leung LWH, Weaver MJ (1990) J Phys Chem 94:6013

    Article  CAS  Google Scholar 

  10. Leger JM, Lamy C (1990) Ber Bunsenges Phys Chem 94:1021

    CAS  Google Scholar 

  11. Xia XH, Iwasita T, Ge F, Vielstich W (1996) Electrochim Acta 41:711

    Article  CAS  Google Scholar 

  12. Bagotzky VS, Vassiliev YB, Khazova OA (1977) J Electroanal Chem 81:229

    Article  Google Scholar 

  13. Iwasita T, Nart FC, Lopez B, Vielstich W (1992) Electrochim Acta 37:2361

    Article  CAS  Google Scholar 

  14. Kunimatsu K (1990) Ber Bunsenges Phys Chem 94:1025

    CAS  Google Scholar 

  15. Stonehart P (1973) Electrochim Acta 18:63

    Article  CAS  Google Scholar 

  16. Gottesfeld S, Paffard J (1988) J Electrochem Soc 135:2651

    Article  CAS  Google Scholar 

  17. Schmidt VM, Oetjen HF, Divisek J (1997) J Electrochem Soc 144:L237

    Article  CAS  Google Scholar 

  18. Barz DPJ, Schmidt VM (2001) Phys Chem Chem Phys 3:330

    Article  CAS  Google Scholar 

  19. Tarasevich AR, Sadkowsky A, Yeager EB (1983) A comprehensive treatise of electrochemistry, vol. 7. In: Conway BE, Bockris JO´M, Yeager EB, Kahn SUM, White RE (eds) New York, p 301

  20. Yeager EB (1984) Electrochim Acta 29:1527

    Article  CAS  Google Scholar 

  21. Enayetullah MA, DeVilbiss TD, Bockris JO’M (1989) J Electrochem Soc 136:3369

    Article  CAS  Google Scholar 

  22. Hall SB, Khudaish EA, Hart AL (1997) Electrochim Acta 43:579

    Article  Google Scholar 

  23. Chu D, Gilman S (1994) J Electrochem Soc 14:1770

    Article  Google Scholar 

  24. Bittins-Cattaneo B, Wasmus S, López-Mishima B, Vielstich W (1993) J Appl Electrochem 23:625

    Article  CAS  Google Scholar 

  25. Schmidt VM, Rodríguez JL, Pastor E (2001) J Electrochem Soc 148:A293

    Article  CAS  Google Scholar 

  26. Rodríguez JL, Pastor E, Zinola CF, Schmidt VM (2006) J Appl Electrochem 36:1271

    Article  CAS  Google Scholar 

  27. Jusys Z, Kaiser J, Behm RJ (2003) J Electroanal Chem 554–555:427

    Article  CAS  Google Scholar 

  28. Planes G, García G, Pastor E (2007) Electrochem Commun 3:330

    Google Scholar 

  29. Woods R (1974) J Electroanal Chem 49:217

    Article  CAS  Google Scholar 

  30. García G, Silva-Chong JA, Guillén-Villafuerte O, Rodríguez JL, González ER, Pastor E (2006) Catal Today 116:415

    Article  CAS  Google Scholar 

  31. Yeager E (1984) Electrochim Acta 29:1527

    Article  CAS  Google Scholar 

  32. Watanabe M, Motoo S (1975) J Electroanal Chem 60:275

    Article  CAS  Google Scholar 

  33. Gasteiger H, Markovic N, Ross PN, Cairns E (1993) J Phys Chem 97:12020

    Article  CAS  Google Scholar 

  34. Gasteiger H, Markovic N, Ross PN, Cairns E (1994) J Electrochem Soc 141:1795

    Article  CAS  Google Scholar 

  35. Chrzanowski W, Kim H, Wieckowski A (1998) Catal Letters 50:69

    Article  CAS  Google Scholar 

  36. Chrzanowski W, Wieckowski A (1998) Langmuir 14:1967

    Article  CAS  Google Scholar 

  37. Hogarth M, Munk J, Shukla A, Hamnett A (1994) J Appl Electrochem 24:85

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from MEC (NAN2004-09333-C05-04, FEDER, Spain) and PDT (Uruguay) is gratefully acknowledged. The authors wish to thank AECI for financing the collaboration project between both laboratories (A/2564/05). O. Guillén-Villafuerte thanks Cajacanarias for the fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Pastor.

Additional information

This paper is dedicated to Prof. Francisco Nart, in memoriam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez, S., Zinola, F., Planes, G. et al. The influence of hydrogen peroxide on carbon monoxide electrooxidation at Pt/C and Pt:Ru/C electrodes. J Solid State Electrochem 11, 1521–1529 (2007). https://doi.org/10.1007/s10008-007-0345-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-007-0345-x

Keywords

Navigation