Skip to main content
Log in

Improvement of the electrochemical properties of “as-grown” boron-doped polycrystalline diamond electrodes deposited on tungsten wires using ethanol

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical properties of boron-doped diamond (BDD) polycrystalline films grown on tungsten wire substrates using ethanol as a precursor are described. The results obtained show that the use of ethanol improves the electrochemistry properties of “as-grown” BDD, as it minimizes the graphitic phase upon the surface of BDD, during the growth process. The BDD electrodes were characterized by Raman spectroscopy, scanning electronic microscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The boron-doping levels of the films were estimated to be ∼1020 B/cm3. The electrochemical behavior was evaluated using the \( {\text{Fe}}{\left( {{\text{CN}}} \right)}_{{\text{6}}} ^{{{{\text{3}} - } \mathord{\left/ {\vphantom {{{\text{3}} - } {{\text{4}} - }}} \right. \kern-\nulldelimiterspace} {{\text{4}} - }}} \) and \( {\text{Ru}}{\left( {{\text{NH}}_{{\text{3}}} } \right)}_{{\text{6}}} ^{{{{\text{3 + }}} \mathord{\left/ {\vphantom {{{\text{3 + }}} {{\text{2 + }}}}} \right. \kern-\nulldelimiterspace} {{\text{2 + }}}}} \) redox couples and dopamine. Apparent heterogeneous electro-transfer rate constants \( k^{0}_{{{\text{app}}}} \) were determined for these redox systems using the CV and EIS techniques. \( k^{0}_{{{\text{app}}}} \) values in the range of 0.01–0.1 cm s−1 were observed for the \( {\text{Fe}}{\left( {{\text{CN}}} \right)}_{{\text{6}}} ^{{{{\text{3}} - } \mathord{\left/ {\vphantom {{{\text{3}} - } {{\text{4}} - }}} \right. \kern-\nulldelimiterspace} {{\text{4}} - }}} \) and \( {\text{Ru}}{\left( {{\text{NH}}_{{\text{3}}} } \right)}_{{\text{6}}} ^{{{{\text{3 + }}} \mathord{\left/ {\vphantom {{{\text{3 + }}} {{\text{2 + }}}}} \right. \kern-\nulldelimiterspace} {{\text{2 + }}}}} \) redox couples, while in the special case of dopamine, a lower \( k^{0}_{{{\text{app}}}} \) value of 10−5 cm s−1 was found. The obtained results showed that the use of CH3CH2OH (ethanol) as a carbon source constitutes a promising alternative for manufacturing BDD electrodes for electroanalytical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Goeting CH, Foord JS, Marken F, Compton RG (1999) Diamond Relat Mater 8:824

    Article  CAS  Google Scholar 

  2. Xu JS, Granger MC, Chen QY, Strojek JW, Lister TE, Swain GM (1997) Anal Chem 69:A591

    Google Scholar 

  3. Pleskov YV (2002) Russ J Electrochem 38:1275

    Article  CAS  Google Scholar 

  4. Granger MC, Witek M, Xu JS, Wang J, Hupert M, Hanks A, Koppang MD, Butler JE, Lucazeau G, Mermoux M, Strojek JW, Swain GM (2000) Anal Chem 72:3793

    Article  CAS  Google Scholar 

  5. Ranganathan S, Kuo TC, McCreery RL (1999) Anal Chem 71:3574

    Article  CAS  Google Scholar 

  6. Granger MC, Swain GM (1999) J Electrochem Soc 146:4551

    Article  CAS  Google Scholar 

  7. Mahé E, Devilliers D, Comninellis C (2005) Electrochim Acta 50:2263

    Article  Google Scholar 

  8. Hupert M, Muck A, Wang R, Stotter J, Cvackova Z, Haymond S, Show Y, Swain GM (2003) Diamond Relat Mater 12:1940

    Article  CAS  Google Scholar 

  9. Stoneham AM, Ford IJ, Chalker PR (1998) MRS Bull 23:28

    CAS  Google Scholar 

  10. Shah SI, Waite MM (1992) Appl Phys Lett 61:3113

    Article  CAS  Google Scholar 

  11. Ruan J, Choyke WJ, Kobashi K (1993) Appl Phys Lett 62:1379

    Article  CAS  Google Scholar 

  12. Baranauskas V, Tosin MC, Peterlevitz AC, Ceragioli H, Durrant SF (2000) J Appl Phys 88:1650

    Article  CAS  Google Scholar 

  13. Baranauskas V, Li BB, Peterlevitz A, Tosin MC, Durrant SF (1999) J Appl Phys 85:7455

    Article  CAS  Google Scholar 

  14. Su QF, Lu JF, Wang LJ, Liu JM, Ruan JF, Cui JT, Shi WM, Xia YB (2005) Solid-State Electron 49:1044

    Article  CAS  Google Scholar 

  15. Ma ZB, Wang JH, Wang CX, Man WD (2003) Plasma Sci Technol 5:1735

    Article  CAS  Google Scholar 

  16. Li BB, Baranauskas V, Peterlevitz A, Chang DC, Doi I, Trava-Airoldi VJ, Corat EJ (1998) Diamond Relat Mater 7:1259

    Article  CAS  Google Scholar 

  17. Honda K, Yoshimura M, Rao TN, Tryk DA, Fujishima A, Yasui K, Sakamoto Y, Nishio K, Masuda H (2001) J Electroanal Chem 514:35

    Article  CAS  Google Scholar 

  18. Farabaugh EN, Robins L, Feldman A, Johnson CE (1995) J Mater Res 10:1448

    CAS  Google Scholar 

  19. Baranauskas V, Peled A, Trava-Airoldi VJ, Lima C, Doi I, Corat EJ (1994) Appl Surf Sci 80:129

    Article  Google Scholar 

  20. Marken F, Paddon CA, Asogan D (2002) Electrochem Commun 4:62

    Article  CAS  Google Scholar 

  21. Boukamp BA (1986) Solid State Ionics 20:31

    Article  CAS  Google Scholar 

  22. Ferro S, De Battisti A (2002) Electrochim Acta 47:1641

    Article  CAS  Google Scholar 

  23. Kawarada H (1996) Surf Sci Rep 26:205

    Article  CAS  Google Scholar 

  24. Shinagawa H, Kido G, Takamasu T, Gamo MN, Ando T (2002) Superlattices Microstruct 32:289

    Article  CAS  Google Scholar 

  25. Looi HJ, Jackman RB, Foord JS (1998) Appl Phys Lett 72:353

    Article  CAS  Google Scholar 

  26. Ristein J, Maier F, Riedel M, Stammer M, Ley L (2001) Diamond Relat Mater 10:416

    Article  CAS  Google Scholar 

  27. Goss JP, Jones R, Heggie MI, Ewels CP, Briddon PR, Oberg S (2002) Phys Rev B 65:115207

    Article  Google Scholar 

  28. Fischer AE, Show Y, Swain GM (2004) Anal Chem 76:2553

    Article  CAS  Google Scholar 

  29. Yang HH, McCreery RL (1999) Anal Chem 71:4081

    Article  CAS  Google Scholar 

  30. DuVall SH, McCreery RL (2000) J Am Chem Soc 122:6759

    Article  CAS  Google Scholar 

  31. Chen PH, Fryling MA, McCreery RL (1995) Anal Chem 67:3115

    Article  CAS  Google Scholar 

  32. Chen PH, McCreery RL (1996) Anal Chem 68:3958

    Article  CAS  Google Scholar 

  33. Fujishima A, Rao TN, Popa E, Sarada BV, Yagi I, Tryk DA (1999) J Electroanal Chem 473:179

    Article  CAS  Google Scholar 

  34. Alehashem S, Chambers F, Strojek JW, Swain GM, Ramesham R (1995) Anal Chem 67:2812

    Article  CAS  Google Scholar 

  35. Nicholson RS (1965) Anal Chem 37:1351

    Article  CAS  Google Scholar 

  36. Brug GJ, Vandeneeden A, Sluytersrehbach M, Sluyters JH (1984) J Electroanal Chem 176:275

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Carol Collins for her technical assistance in English and the “Grupo de Propriedades Ópticas” of IFGW/UNICAMP for use of their Raman spectrometer. We also gratefully acknowledge the Brazilian agencies FAPESP, CAPES, and CNPq for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitor Baranauskas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teófilo, R.F., Ceragioli, H.J., Peterlevitz, A.C. et al. Improvement of the electrochemical properties of “as-grown” boron-doped polycrystalline diamond electrodes deposited on tungsten wires using ethanol. J Solid State Electrochem 11, 1449–1457 (2007). https://doi.org/10.1007/s10008-007-0319-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-007-0319-z

Keywords

Navigation