Skip to main content
Log in

Charge compensation dynamics in a soluble copolymer of poly(aniline) and poly(phenylene sulfide)

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Poly(phenylene sulfide phenyleneamine), PPSA, is a copolymer of poly(aniline) and poly(phenylene sulfide), soluble in conventional organic solvents as tetrahydrofuran, dimethyl sulfoxide, dimethylformamide, and cyclohexanone. In this research, its electrochemical behavior has been studied in acetonitrile in the presence of different electrolytes, where the loss of electroactivity was observed after few cycles. In this paper, the charge compensation dynamics of PPSA is analyzed through electrochemical quartz crystal microbalance experiments and electroacoustic impedance measurements. Raman spectroscopy data have shown that once the oxidation of the sulfur atom occurs, a loss of electroactivity is observed, being not possible to recover the pristine state of the polymer. Fourier transform infrared (FTIR) and X-ray diffraction (XRD) data obtained for the fully oxidized polymer are consistent with the formation of a networked polymer due to the electrophilic attack of the positive sulfur atom on the activated aromatic rings. Electrochemical quartz crystal microbalance results clearly show that the degree of irreversibility fully depends on the chemical nature of the anions with a negligible participation of the cations of the electrolytic solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Scheme 3

Similar content being viewed by others

References

  1. Genies EM, Hany P, Jantier C (1988) J Appl Electrochem 18:751

    Article  CAS  Google Scholar 

  2. Skotheim TA (1987) Handbook of conducting polymers. Marcel Dekker, New York

    Google Scholar 

  3. Anderson MR, Mattes BR, Reiss H, Kaner RB (1991) Science 252:1412

    Article  CAS  Google Scholar 

  4. Liang WB, Martin CR (1991) Chem Mater 3:390

    Article  CAS  Google Scholar 

  5. Gustafsson G, Cao Y, Traecy GM, Klavetter F, Colaneri N, Heeger AJ (1992) Nature 357:477

    Article  CAS  Google Scholar 

  6. Grem G, Leditzky G, Ullrich B, Leising G (1992) Adv Mater 4:36

    Article  CAS  Google Scholar 

  7. Barlett PN, Birkin PR (1993) Synth Met 61:15

    Article  Google Scholar 

  8. Genies EM, Noel P (1991) J Electroanal Chem 31:89

    Article  Google Scholar 

  9. Li S, Dong H, Cao Y (1989) Synth Met 29:329

    Article  Google Scholar 

  10. Bae WJ, Jo WH, Park YH (2003) Synth Met 132:239

    Article  CAS  Google Scholar 

  11. Dao LH, Leclerc M, Guay J, Chevalier JW (1989) Synth Met 29:377

    Article  Google Scholar 

  12. Park JW, Shin HC, Lee Y, Son Y, Baik DH (1999) Macromolecules 32:4615

    Article  CAS  Google Scholar 

  13. Wei Y, Hariharan R, Patel S (1990) Macromolecules 23:758

    Article  CAS  Google Scholar 

  14. Schemid AL, Lira LM, Córdoba de Torresi SI (2002) Electrochim Acta 47:2005

    Article  CAS  Google Scholar 

  15. Winokur MJ (1997) Handbook of conducting polymers. In: Skotheim TA, Elsenbaumer RL, Reynolds JR (eds). Marcel Dekker, New York, pp 708–725

    Google Scholar 

  16. Wang LX, Guth TS, Havinga E, Mullen K (1996) Angew Chem Int Ed 35:1495

    Article  CAS  Google Scholar 

  17. Leuninger J, Wang C, Guth TS, Enkelmann V, Pakula T, Mullen K (1998) Macromolecules 31:1720

    Article  CAS  Google Scholar 

  18. Li GF, Josowicz M, Janata J, Mullen K (2001) J Phys Chem B 105:2191

    Article  CAS  Google Scholar 

  19. Bassler H, Tak YH, Leuninger J, Mullen K (1998) J Phys Chem B 102:4887

    Article  Google Scholar 

  20. Bazito FFC, Córdoba de Torresi SI (2006) Polymer 47:1259

    Article  CAS  Google Scholar 

  21. Bazito FFC, Silveira LT, Torresi RM, Córdoba de Torresi SI (2007) Electrochim Acta (in press). DOI 10.1016/j.electacta.2006.12.055

  22. Martin SJ, Granstaff VE, Frye GC (1991) Anal Chem 63:2272

    Article  CAS  Google Scholar 

  23. Hillman AR (2003) Encyclopedia of electrochemistry, vol. 3. In: Bard AJ, Stratmann M (eds) Wiley, New York, pp 230–289

    Google Scholar 

  24. Buttry DA, Ward MD (1992) Chem Rev 92:1355

    Article  CAS  Google Scholar 

  25. Varela H, Malta M, Torresi RM (2000) Quim Nova 23:664

    CAS  Google Scholar 

  26. Sauerbrey G (1959) Z Phys 155:206

    Article  CAS  Google Scholar 

  27. Silva JEP, Faria DLA, Cordoba de Torresi SI, Temperini MLA (2000) Macromolecules 33:3077

    Article  Google Scholar 

  28. Silva JEP, Cordoba de Torresi SI, Temperini MLA, Gonçalves D, Oliveira Jr ON (1999) Synth Met 101:691

    Article  Google Scholar 

  29. Silva JEP, Temperini MLA, Cordoba de Torresi SI (1999) Electrochim Acta 44:1887

    Article  Google Scholar 

  30. Sergeyev VA, Nedelkin VI (1986) J Polym Sci A Polym Chem 24:3153

    Article  Google Scholar 

  31. Dektar JL, Hacker NP (1990) J Am Chem Soc 112:6004

    Article  CAS  Google Scholar 

  32. Miyatake K, Yamamoto K, Endo K, Tsuchida E (1998) J Org Chem 63:7522

    Article  CAS  Google Scholar 

  33. Imazeki S, Sumino M, Fukasawa K, Ishihara M, Akiyama T (2004) Synthesis 10:1648

    Article  Google Scholar 

  34. Piaggio P, Musso GF, Dellepiane G (1995) J Phys Chem 99:4187

    Article  CAS  Google Scholar 

  35. Yamamoto K, Yoshida S, Nishide H, Tsuchida E (1989) Bull Chem Soc Jpn 62:3655

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by FAPESP (03/10015-3) and CNPq. We also thank the Laboratorio de Espectroscopia Molecular (IQ-USP) for Raman facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Torresi.

Additional information

This work is in memoriam of Prof. Dr. Francisco C. Nart, dearest friend and colleague, whose scientific skills and enthusiasm will always be remembered.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazito, F.F.C., Córdoba de Torresi, S.I. & Torresi, R.M. Charge compensation dynamics in a soluble copolymer of poly(aniline) and poly(phenylene sulfide). J Solid State Electrochem 11, 1471–1479 (2007). https://doi.org/10.1007/s10008-007-0303-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-007-0303-7

Keywords

Navigation