Skip to main content
Log in

Behavior of manganite electrodes in contact with LSGM electrolyte: the nature of low electrochemical activity

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical cells with electrodes based on La0.8Sr0.2MnO3 (LSM) and supporting solid electrolytes La0.88Sr0.12Ga0.82Mg0.18O2.85 (LSGM) and Ce0.80Sm0.20O1.90 (SDC) were studied comparatively. Characteristics of LSM electrodes and composite electrodes comprising a mixture of LSM and electrolytes of different origins [LSGM, SDC, and Zr0.82Sc0.18O1.91 (SSZ) in the mass ratio of 1:1] were analyzed. It was shown that: 1) the electrode polarization conductivity and the ohmic resistance of the cells with the LSM–LSGM composite electrodes on the LSGM and SDC electrolytes had very similar values, while they were largely different from all the other electrodes, 2) the electrochemical activity of the electrodes on the SDC electrolyte was much higher than on the LSGM electrolyte, and 3) the ohmic resistance of the cells with the SDC electrolyte corresponded to the electrolyte resistance, whereas, the ohmic resistance of the cells with the LSGM electrolyte was much larger than the electrolyte resistance. The obtained results are due to the interaction between the LSM and LSM-containing electrodes with the LSGM electrolyte during sintering, leading to the formation of a product with a very low conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ishihara T, Matsuda H, Takita Y (1994) J Am Chem Soc 116:3801

    Article  CAS  Google Scholar 

  2. Feng M, Goodenough JB (1994) Eur J Solid State Inorg Chem 31:663

    CAS  Google Scholar 

  3. Matsui T, Inaba M, Mineshige A, Ogumi Z (2005) Solid State Ion 176:647

    Article  CAS  Google Scholar 

  4. Akikusa J, Adachi K, Hoshino K, Ishihara T, Takita Y (2001) J Elecrochem Soc 148:A1275

    Article  CAS  Google Scholar 

  5. Kuroda K, Hashimoto I, Adachi K, Akikusa J, Tamou Y, Komada N, Ishihara T, Takita Y (2000) Solid State Ion 132:199

    Article  CAS  Google Scholar 

  6. Wang S, Kato T, Nagata S, Kaneko T, Iwashita N, Honda T, Dokiya M (2002) Solid State Ion 152–153:477

    Article  Google Scholar 

  7. Milliken C, Guruswamy S (2002) J Am Ceram Soc 85:2479

    Article  CAS  Google Scholar 

  8. Kamata H, Yonemura Y, Mizusaki J, Tagawa H, Naraya K, Sasamoto T (1995) J Phys Chem Solids 56:943

    Article  CAS  Google Scholar 

  9. Poirson A, Decorse P, Caboche G, Dulfour LC (1997) Solid State Ion 99:287

    Article  CAS  Google Scholar 

  10. Kenjo T, Osawa S, Fujikawa K (1991) J Electrochem Soc 138:349

    Article  CAS  Google Scholar 

  11. Tanner CW, Fung KZ, Virkar AV (1997) J Electrochem Soc 144:21

    Article  CAS  Google Scholar 

  12. Murray EP, Barnett A (2001) Solid State Ion 143:265

    Article  Google Scholar 

  13. Kim JD, Kim GD, Moon JW, Park Y, Lee WH, Kobayashi K, Nagai M, Kim CE (2001) Solid State Ion 143:379

    Article  CAS  Google Scholar 

  14. Yamahara K, Jacobson CP, Visco SJ, Zhang XF, De Jonghe LC (2005) Solid State Ion 176:275

    Article  CAS  Google Scholar 

  15. Yamahara K, Jacobson CP, Visco SJ, De Jonghe LC (2005) Solid State Ion 176:451

    Article  CAS  Google Scholar 

  16. Sahibzada M, Benson SJ, Rudkin RA, Kilner JA (1998) Solid State Ion 113–115:285

    Article  Google Scholar 

  17. Adler SB (2004) Chem Rev 104:4791

    Article  CAS  Google Scholar 

  18. Yasumoto K, Mori N, Mizusaki J, Tagawa H, Dokiya M (2001) J Electrochem Soc 148:A105

    Article  CAS  Google Scholar 

  19. Yasuda I, Ogasawara K, Hishinuma M, Kawada T, Dokiya M (1996) Solid State Ion 86–88:1197

    Article  Google Scholar 

  20. Lee HY, Cho WS, Oh SM, Wiemhöfer HD, Göpel W (1995) J Electrochem Soc 142:2659

    Article  CAS  Google Scholar 

  21. Huang K, Feng M, Goodenough JB, Schmerling M (1996) J Electrochem Soc 143:3630

    Article  CAS  Google Scholar 

  22. Huang K, Feng M, Goodenough JB, Milliken C (1997) J Electrochem Soc 144:3620

    Article  CAS  Google Scholar 

  23. Huang K, Goodenough J (2000) J Alloys Compd 303–304:454

    Article  Google Scholar 

  24. Huang K, Wan J, Goodenough JB (2001) J Mater Sci 36:1093

    Article  CAS  Google Scholar 

  25. Wang S, Lu X, Liu M (2002) J Solid State Electrochem 6:384

    Article  CAS  Google Scholar 

  26. Yi JY, Choi GM (2004) J Eur Ceram Soc 24:1359

    Article  CAS  Google Scholar 

  27. Gong W, Goplan S, Pal UB (2005) J Electrochem Soc 152:A1890

    Article  CAS  Google Scholar 

  28. Armstrong TJ, Virkar AV (2002) J Electrochem Soc 149:A1565

    Article  CAS  Google Scholar 

  29. Naoumidis A, Ahmad-Khanlou A, Samardzija Z, Kolar D (1999) Fresenius Z Anal Chem 365:277

    Article  Google Scholar 

  30. Rozumek M, Majewski P, Mandlener T, Aldinger F (2002) Mat-wiss Werkstofftech 33:348

    Article  CAS  Google Scholar 

  31. Rozumek M (2003) Kristallchemische Eigenschaften ausgewählter Funktions-Kermiken im quasi-quaternären System Ga2O3–La2O3–MgO–SrO. Thesis, Stuttgart

  32. Wang W, Hellstrom EE (1996) Mat Res Soc Symp Proc 411:261

    CAS  Google Scholar 

  33. Pelosato R, Sora IN, Dotelli G, Ruffo R, Mari CM (2005) J Eur Ceram Soc 25:2587

    Article  CAS  Google Scholar 

  34. Yi JY, Choi GM (2002) Solid State Ion 148:557

    Article  CAS  Google Scholar 

  35. Trofimenko N, Ullmann H (1999) Solid State Ion 118:215

    Article  CAS  Google Scholar 

  36. Thangadurai V, Shukla AK, Gopalakrishnan J (1998) Chem Commun, p2647

  37. Sebastian L, Shukla AK, Gopalakrishnan J (2000) Bull Mater Sci 23:169

    Article  CAS  Google Scholar 

  38. Gorelov VP, Bronin DI, Sokolova JV, Näfe H, Aldinger F (2001) J Eur Ceram Soc 21:2311

    Article  CAS  Google Scholar 

  39. Fleig J, Pham P, Sztulzaft P, Maier J (1998) Solid State Ion 113–115:739

    Article  Google Scholar 

  40. Jiang SP, Love JG, Apateanu L (2003) Solid State Ion 160:15

    Article  CAS  Google Scholar 

  41. Perfiliev MV, Demin AK, Kuzin BL, Lipilin AS (1988) High-temperature Electrolysis of Gases. Moscow, Nauka (in Russian)

  42. Yi JY, Choi GM (2004) Solid State Ion 175:145

    Article  CAS  Google Scholar 

  43. Pelosato R, Sora IN, Ferrari V, Dotelli G, Mari CM (2004) Solid State Ion 175:87

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Russian Foundation for Basic Research for the financial support of Project No. 04-03-96084, under which this study was performed. They are grateful to Z. Martemyanova for her XRD assistance, to A. Pankratov for his help in obtaining SEM images, and especially to Alex Pickering for her assistance in critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Bronin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bronin, D.I., Kuzin, B.L., Yaroslavtsev, I.Y. et al. Behavior of manganite electrodes in contact with LSGM electrolyte: the nature of low electrochemical activity. J Solid State Electrochem 10, 651–658 (2006). https://doi.org/10.1007/s10008-006-0128-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-006-0128-9

Keywords

Navigation