Skip to main content
Log in

Transport and electrochemical properties of Sr2Fe1.5Mo0.5O6 + Ce0.8Sm0.2O1.9 composite as promising anode for solid oxide fuel cells

  • Applied Electrochemistry and Metal Corrosion Protection
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Study of the physical and electrical properties of the Sr2Fe1.5Mo0.5 + Ce0.8Sm0.2O1.9 composite material and its electrochemical properties as an electrode in contact with lanthanum gallate based electrolyte based on in reducing media revealed an increase in the dilatometric curve slope at around 400°C. This corresponds to an increase in the thermal expansion coefficient from 12.8 × 10–6 to 19.3 × 10–6 °C–1. An analysis of electrochemical impedance spectra by the relaxation-time-distribution method demonstrated the electrode reaction is localized in the frequency range 500–0.01 Hz. The electrical conductivity of the material under study was found to be about 17 S cm–1 at 800°C in the atmosphere of humid hydrogen. The polarization resistance under the same conditions was about 0.15 Ω cm2. The dependence of the polarization resistance on the partial pressure of hydrogen is linear with a reaction order of about–0.4, whereas that on the partial pressure of water has the opposite slope with a reaction order of about 0.2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fergus, J., Hui, R., Li, X., et al., Solid Oxide Fuel Cells: Materials Properties and Performance, New York CRC Press, 2008.

    Google Scholar 

  2. Viswanathan, B. and Scibioh, M.A., Fuel Cells Principles and Applications, New York CRC Press, 2008.

    Google Scholar 

  3. Liu, Y.L., Thydén, K., Chen, M., and Hagen, A., Solid State Ionics, 2012, vol. 206, pp. 97–103.

    Article  Google Scholar 

  4. Suntsov, A.Yu., Leonidov, I.A., Patrakeev, M.V., and Kozhevnikov, V.L., Solid State Ionics, 2015, vol. 274, pp. 17–23.

    Article  CAS  Google Scholar 

  5. Ishimoto, T., Ito, Y., Tada, T., et al., Solid State Ionics, 2016, vol. 285, pp. 195–201.

    Article  CAS  Google Scholar 

  6. Lee, Y. and Kim, H., Ceram. Int., 2015, vol. 41, pp. 5984–5991.

    Article  CAS  Google Scholar 

  7. Han, X., Yang, Ji., Guo, H., et al., Int. J. Hydrogen Energy, 2016, vol. 41, pp. 8401–8411.

    Article  CAS  Google Scholar 

  8. Alzate-Restrepo, V. and Hill, J.M., J. Power Sources, 2010, vol. 195, pp. 1344–1351.

    Article  CAS  Google Scholar 

  9. Osinkin, D.A., Kuzin, B.L., and Bogdanovich, N.M., Solid State Ionics, 2013, vol. 251. 66–69.

  10. Osinkin, D.A., Int. J. Hydrogen Energy, 2016, vol. 41, pp. 17577–17584.

    Article  CAS  Google Scholar 

  11. Zhang, X., Ohara, S., Maric, R., et al., Solid State Ionics, 2000, vol. 133, pp. 153–160.

    Article  CAS  Google Scholar 

  12. Jiang, S.P. and Yan, Y., Materials for High-temperature Fuel Cells, Wiley-VCH, 2013.

  13. Nagai, I., Shirakawa, N., Ikeda, S., et al., Appl. Phys. Lett., 2005, vol. 87, pp. 024105.

  14. Childs, N.B., Weisenstein, A., Smith, R., et al., J. Appl. Phys., 2013, vol. 113, pp. 243506.

  15. Huang, Y.H., Das, R.I., Denys, J.C., and Goodenough, J.B., J. Electrochem. Soc., 2006, vol. 153, pp. A1266–A1272.

  16. Wang, Z., Tian, Y., and Li, Y., J. Power Sources, 2011, vol. 196, pp. 6104–6109.

    Article  CAS  Google Scholar 

  17. Liu, Q., Bugaris, D.E., Xiao, G., et al., J. Power Sources, 2011, vol. 196, pp. 9148–9153.

    Article  CAS  Google Scholar 

  18. Dai, N., Wang, Z., Jiang, T., et al., J. Power Sources, 2014, vol. 268, pp. 176–182.

    Article  CAS  Google Scholar 

  19. He, B., Zhao, L., Song, S., et al., J. Electrochem. Soc., 2012, vol. 159, pp. B619–B626.

  20. Gorelov, V.P., Bronin, D.I., Sokolova, Ju.V., et al., J. Eur. Ceram. Soc., 2001, vol. 21, pp. 2311–2317.

    Article  CAS  Google Scholar 

  21. Gavrilyuk, A.L., Osinkin, D.A., Kuzin, B.L., and Bronin, D.I., Proc. 19th Int. Conf. Solid State Ionics, 2013, Mon-E-087.

    Google Scholar 

  22. Liu, B.Q., Dong, X., Xiao, G., et al., Adv. Mater., 2010, vol. 22, pp. 5478–5482.

    Article  CAS  Google Scholar 

  23. Li, S.Y., Lü, Z., Huang, X.Q., et al., Solid State Ionics, 2007, vol. 178, pp. 417–422.

    Article  CAS  Google Scholar 

  24. Markandeya, Y., Reddy, Y.S., Bale, S., et al., Bull. Mater. Sci., 2015, vol. 38, pp. 1603–1608.

    Article  CAS  Google Scholar 

  25. Stevenson, J.W., Hasinska, K., and Canfield, N.L., J. Electrochem. Soc., 2000, vol. 147, pp. 3213–3218.

    Article  CAS  Google Scholar 

  26. Osinkin, D.A., Bronin, D.I., Beresnev, S.M., et al., J. Solid State Electrochem., 2014, vol. 18, pp. 149–156.

    Article  CAS  Google Scholar 

  27. Plint, S.M., Connor, P.A., Tao, S., and Irvine, J.T.S., Solid State Ionics, 2006, vol. 177, pp. 2005–2008.

    Article  CAS  Google Scholar 

  28. Zheng, Y., Zhang, C., Ran, R., et al., Acta Mater., 2009, vol. 57, pp. 1165–1175.

    Article  CAS  Google Scholar 

  29. Fu, Q.X., Tietz, F., and Stoever, D., J. Electrochem. Soc., 2006, vol. 153, pp. D74–D83.

  30. Miao, G., Yuan, C., Chen, T., et al., Int. J. Hydrogen Energy, 2016, vol. 41, pp. 1104–1111.

    Article  CAS  Google Scholar 

  31. Primdahl, S., Hansen, J.R., Grahl-Madsen, L., and Larsen, P.H., J. Electrochem. Soc., 2001, vol. 148, pp. A74–A81.

  32. Pudmich, G., Boukamp, B.A., Gonzalez-Cuenca, M., et al., Solid State Ionics, 2000, vol. 135, pp. 433–438.

    Article  CAS  Google Scholar 

  33. Tao, S.W. and Irvine, J.T.S., Chem. Mater., 2006, vol. 18, pp. 5453–5460.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Osinkin.

Additional information

Original Russian Text © D.A. Osinkin, N.I. Lobachevskaya, A.V. Kuz’min, 2017, published in Zhurnal Prikladnoi Khimii, 2017, Vol. 90, No. 1, pp. 45−50.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osinkin, D.A., Lobachevskaya, N.I. & Kuz’min, A.V. Transport and electrochemical properties of Sr2Fe1.5Mo0.5O6 + Ce0.8Sm0.2O1.9 composite as promising anode for solid oxide fuel cells. Russ J Appl Chem 90, 41–46 (2017). https://doi.org/10.1134/S1070427217010074

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427217010074

Navigation