Skip to main content
Log in

Photoelectrode characteristics of an organic bilayer in water phase containing a redox molecule

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

We have recently reported that the organic bilayer of 3,4,9,10-perylenetetracarboxyl-bisbenzimidazole (PTCBI, n-type semiconductor) and 29H,31H-phthalocyanine (H2Pc, p-type semiconductor), which is a part of a photovoltaic cell, acts as a photoanode in the water phase (Abe et al., ChemPhysChem 5:716, [2004]); in that case, the generation of the photocurrent involving an irreversible thiol oxidation at the H2Pc/water interface took place to be coupled with hole conduction through the H2Pc layer, based on the photophysical character of the bilayer. In the present work, the photoelectrode characteristics of the bilayer were investigated in the water phase containing a redox molecule \({\left( {{\text{Fe}}\,^{{{{\text{III}}} \mathord{\left/ {\vphantom {{{\text{III}}} {{\text{II}}}}} \right. \kern-\nulldelimiterspace} {{\text{II}}}}} {\left( {{\text{CN}}} \right)}^{{{3 - } \mathord{\left/ {\vphantom {{3 - } {4 - }}} \right. \kern-\nulldelimiterspace} {4 - }}}_{6} } \right)}\), where the photo-induced oxidation and reduction for the \({\text{Fe}}\,^{{{{\text{III}}} \mathord{\left/ {\vphantom {{{\text{III}}} {{\text{II}}}}} \right. \kern-\nulldelimiterspace} {{\text{II}}}}} {\left( {{\text{CN}}} \right)}^{{{3 - } \mathord{\left/ {\vphantom {{3 - } {4 - }}} \right. \kern-\nulldelimiterspace} {4 - }}}_{6}\) couple were found to take place at the bilayer. The photoanodic current involving the \({\text{Fe}}\,^{{{\text{II}}}} {\left( {{\text{CN}}} \right)}^{{4 - }}_{6}\) oxidation efficiently occurred at the interface of H2Pc/water, similar to the previous example. In the view of the voltammograms obtained, it was noted that there are pin-holes in the H2Pc layer of the bilayer, leading to a cathodic reaction with \({\text{Fe}}\,^{{{\text{III}}}} {\left( {{\text{CN}}} \right)}^{{3 - }}_{6}\) at the PTCBI surface especially in the dark; that is, the band bending at the PTCBI/water interface can essentially be reduced by applying a negative potential [e.g., < ∼ 0 V (vs Ag/AgCl)] to the PTCBI, when the cathodic reaction may take place through the conduction band of the PTCBI. Moreover, under that applied potential condition of irradiation, the photogenerated electron carrier part can move to the PTCBI surface, thus enhancing the reduction of \({\text{Fe}}\,^{{{\text{III}}}} {\left( {{\text{CN}}} \right)}^{{3 - }}_{6}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Imahori H, Hosomizu K, Mori Y, Sato T, Ahn T-K, Kim S-K, Kim D, Nishimura Y, Yamazaki I, Ishii H, Hotta H, Matano Y (2004) J Phys Chem B 108:5018

    Article  CAS  Google Scholar 

  2. Yang S, Fan L, Yang S (2004) J Phys Chem B 108:4394

    Article  CAS  Google Scholar 

  3. Tang CW (1986) Appl Phys Lett 48:183

    Article  CAS  Google Scholar 

  4. Morikawa T, Adachi C, Tsutsui T, Saito S (1990) Nippon Kagaku Kaishi 962

  5. Hiramoto M, Fukusumi H, Yokoyama M (1992) Appl Phys Lett 61:2580

    Article  CAS  Google Scholar 

  6. Wöhrle D, Kreienhoop L, Schnurpfeil G, Elbe J, Tennigkeit B, Hiller S, Schlettwein D (1995) J Mater Chem 5:1819

    Article  Google Scholar 

  7. Abe T, Nagai K, Kaneko M, Okubo T, Sekimoto K, Tajiri A, Norimatsu T (2004) ChemPhysChem 5:716

    Article  PubMed  CAS  Google Scholar 

  8. Maki T, Hashimoto H (1952) Bull Chem Soc Jpn 25:411

    Article  CAS  Google Scholar 

  9. Sharp JH, Lardon M (1968) J Phys Chem 72:3230

    Article  CAS  Google Scholar 

  10. Surdhar S, Armstrong DA (1986) J Phys Chem 90:5915

    Article  CAS  Google Scholar 

  11. Lever ABP, Milaeva ER, Speier G (1993) The redox chemistry of metallo-phthalocyanines in solution. In: Leznoff CC, Lever ABP (eds), Phthalocyanines, vol. 3. VCH, New York, pp 2–69

    Google Scholar 

  12. Zagal JH, Gulppi MA, Caro CA, Cárdenas-Jirón GI (1999) Electrochem Commun 1:389

    Article  CAS  Google Scholar 

  13. Schlettwein D, Kaneko M, Yamada A, Wöhrle D, Jaeger NI (1991) J Phys Chem 95:1748

    Article  CAS  Google Scholar 

  14. Hill IG, Kahn A (1999) J Appl Phys 86:2116

    Article  CAS  Google Scholar 

  15. Stübinger T, Brütting W (2001) J Appl Phys 90:3632

    Article  CAS  Google Scholar 

  16. Hiromitsu I, Murakami Y, Ito T (2003) J Appl Phys 94:2434

    Article  CAS  Google Scholar 

  17. Yakimov A, Forrest SR (2002) Appl Phys Lett 80:1667

    Article  CAS  Google Scholar 

  18. Hill IG, Schwartz J, Kahn A (2000) Org Electron 1:5

    Article  CAS  Google Scholar 

  19. Loutfy RO, Cheng YC (1980) J Chem Phys 73:2902

    Article  CAS  Google Scholar 

  20. Nagai K, Fujimoto Y, Shiroishi H, Kaneko M, Norimatsu T, Yamanaka T (2001) Chem Lett 354

  21. Nagai K, Yoshida H, Norimatsu T, Miyanaga N, Izawa Y, Yamanaka T (2002) Appl Surf Sci 197:808

    Article  Google Scholar 

Download references

Acknowledgement

This work was partially supported by a Grant-in-Aid for Scientific Research (No. 15750110) from Ministry of Education, Culture, Sports, Science and Technology, Japan (T. A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Abe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abe, T., Nagai, K., Matsukawa, T. et al. Photoelectrode characteristics of an organic bilayer in water phase containing a redox molecule. J Solid State Electrochem 11, 303–309 (2007). https://doi.org/10.1007/s10008-006-0108-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-006-0108-0

Keywords

Navigation