Skip to main content
Log in

The study of Ni–Co alloy deposition on iron powder particles in a fluidized bed from sulphate bath

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

This paper describes a process of electrolytic deposition of nickel–cobalt (Ni–Co) binary alloy on Fe powder. Electrochemical behavior of this binary alloy was studied by cyclic voltammetry with a paraffin impregnated graphite electrode as a working electrode. Deposition of individual metals (Ni, Co), as well as the simultaneous nickel–cobalt co-deposition, was performed in aqueous solutions (Watts-type electrolyte) both with and without Fe powder. Special attention was paid to the influence of suspension density on the electrode process. This density affects on the quality of iron powder electroplating. Preferential deposition of the less noble metal (Co) leading to its higher content in the deposit was observed in contrast to the more noble one (Ni) in spite of higher content of Ni in the plating solution. This anomalous phenomenon–known already for other metals (Zn, Cd, Sn)–has been confirmed and investigated for iron-group metals (Fe, Co, Ni) in this work. Electrolytic deposition of Ni–Co binary alloys, including anomalous behavior is a complicated process. Understanding the anomalous behavior would lead to better control of the deposition process and to explanation of the mechanism of Ni–Co co-deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ε:

Voidage factor

V powder :

Volume of iron powder

V electrolyte :

Volume of the electrolyte

α:

Charge transfer coefficient

CV :

Cyclic voltammetry

PIGE :

Paraffin impregnated graphite electrode

References

  1. Tutovan V, Velican N (1971) Thin Solid Films 7:219

    Article  CAS  Google Scholar 

  2. Kefalas JH (1966) J Appl Physics 3:37

    Google Scholar 

  3. Clauss RJ, Klein RW, Tremmel RA, Adamowicz NC (1971) American Electroplates Society, New York, p 679

  4. Burzynska L, Rudnik E (2000) Hydrometallurgy 54:133

    Article  CAS  Google Scholar 

  5. Correia AN, Machado SAS, Avaca LA (2000) J Electroanal Chem 488:110

    Article  CAS  Google Scholar 

  6. Goldbach S, Kermadec R, Lapicque F (2000) J Appl Electrochem 30:277

    Article  CAS  Google Scholar 

  7. Golodnitsky D, Gudin NV, Volyanuk GA (2000) J Electrochem Soc 147:4156

    Article  CAS  Google Scholar 

  8. Sasaki KY, Talbot JB (2000) J Electrochem Soc 147:189

    Article  CAS  Google Scholar 

  9. Bai A, Chi-Chang Hu (2002) Electrochim Acta 47:3447

    Article  CAS  Google Scholar 

  10. Lupi C, Pilone D (2001) Miner Eng 14:1403

    Article  CAS  Google Scholar 

  11. Lupi C, Pilone D (2002) Waste Manage 22:871

    Article  CAS  Google Scholar 

  12. Brenner A (1963) Electrodeposition of alloys, principles and practice, vol II. Academic, New York, p 239

    Google Scholar 

  13. Barbosa MR, Gassa LM, Ruiz ER (2001) J Solid State Electrochem 6:1

    Article  CAS  Google Scholar 

  14. Golodnitsky D, Rosenberg Yu, Ulus A (2002) Electrochim Acta 47:2707

    Article  CAS  Google Scholar 

  15. Fan Ch, Piront DL (1996) Electrochim Acta 41:1713

    Article  CAS  Google Scholar 

  16. Correia AN, Machado SAS (2000) Electrochim Acta 45:1733

    Article  CAS  Google Scholar 

  17. Hessami S, Tobias CW (1989) J Electrochem Soc 137:3611

    Article  Google Scholar 

  18. Grande WC, Talbot JB (1993) J Electrochem Soc 140:669

    Article  CAS  Google Scholar 

  19. Matlosz M (1993) J Electrochem Soc 140:2272

    Article  CAS  Google Scholar 

  20. Hu CC, Bai A (2002) J Electrochem Soc 149:C615

    Article  CAS  Google Scholar 

  21. Zech N, Podlaha EJ, Landolt D (1999) J Electrochem Soc 146:2886

    Article  CAS  Google Scholar 

  22. Zech N, Podlaha EJ, Landolt D (1999) J Electrochem Soc 146:2892

    Article  CAS  Google Scholar 

  23. Fleischmann M, Oldfield JW (1971) J Electroanal Chem 29:231

    Article  CAS  Google Scholar 

  24. Gálová M, Oriňáková R, Lux L (1998) J Solid State Electrochem 2:2

    Article  Google Scholar 

  25. Gál MF, Gálová M, Turoňová A (2000) Collect Czech Chem Commun 65:1515

    Article  Google Scholar 

  26. Scholz F, Meyer B (1994) Chem Soc rev 23:341–347

    Article  CAS  Google Scholar 

  27. Lorbeer P, Lorenz WJ (1980) Electrochimica Acta 25:375

    Article  CAS  Google Scholar 

  28. Zhuang Y, Podlaha EJ (2000) J Electrochem Soc 147:2231

    Article  CAS  Google Scholar 

  29. Greef R, Peat R, Peter LM, Pletcher D, Robinson J (1985) Instrumental methods in electrochemistry. Ellis Horwood Limited, Great Britain, p 44

    Google Scholar 

Download references

Acknowledgements

This work was supported by the research project INCHEMBIOL (MSM 0021622412), the projects AIP no. 46 and no. 750/2005 from the Ministry of Education, Youth and Sports and GA SR, VEGA (Grant number 1/2118/05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rozik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rozik, R., Oriňàková, R., Markušová, K. et al. The study of Ni–Co alloy deposition on iron powder particles in a fluidized bed from sulphate bath. J Solid State Electrochem 10, 423–429 (2006). https://doi.org/10.1007/s10008-005-0680-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-005-0680-8

Keywords

Navigation