Skip to main content
Log in

Solvent and thiourea adsorption/intercalation effects on the solid-state electrochemistry of α-phase nickel hydroxide nanoparticles

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nanoparticles of α-phase nickel hydroxide were synthesized by a single-step hydrothermal method using urea as the hydrolytic agent. Precipitated powders were of pure turbostratic α-phase as confirmed by x-ray diffraction profile. The ageing of α-Ni(OH)2 in 1.0 M alkali solutions is investigated for pure non-intercalated α-Ni(OH)2 and thiourea intercalated/absorbed α-phase nanomaterials. The α-Ni(OH)2 powder immobilized on the surface of graphite electrodes shows a gradual α→β phase transformation with continuous voltammetric cycling, and the concentration gradient of water that exists in the layered-double-hydroxide-like interlayers of α-phase and the solution was shown to play a crucial role on the high electrochemical activity of this phase nickel hydroxide. To understand the role of water in the ageing process, concomitant entries of non-aqueous solvents like ethanol and acetonitrile along with thiourea were effected. Cyclic voltammetric measurements of thiourea-treated α-Ni(OH)2 samples revealed that hydroxyl ion influx during the anodic oxidation depends on the counter flux of solvent molecules, and if the intercalated the solvent is acetonitrile, then the electrochemical activity of α-Ni(OH)2 reduced drastically; Q a/Q c>1 for water as solvent in the interlayers α-Ni(OH)2 and Q a/Q c<1 for ethanol and acetonitrile as solvents. The α-phase gets stabilized in the presence of thiourea with water and ethanol as co-intercalates. Transmission electron microscope images of α-Ni(OH)2 and thiourea-treated samples show a change in particle size and morphology. Elemental CHNS analysis confirms the presence of sulphur in the thiourea intercalated samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hana XJ, Xua P, Xua CQ, Zhaoa L, Moa ZB, Liu T (2005) Electrochim Acta 50:2763

    Article  CAS  Google Scholar 

  2. Meyer M, Bée A, Talbot D, Cabuil V, Boyer JM, Répetti B, Garrigos R (2004) J Colloid Interface Sci 277:309

    Article  PubMed  CAS  Google Scholar 

  3. Liu X, Yu L (2004) Mater Lett 58:1327

    Article  CAS  Google Scholar 

  4. Carter JC, Khulbe PK, Gray J, Van Zee JW, Angel SM (2004) Anal Chim Acta 514:241

    Article  CAS  Google Scholar 

  5. Srinivasan V, Weidner JW, White RE (2000) J Solid State Electrochem 4:367

    Article  CAS  Google Scholar 

  6. Le Bihan S, Guenot J, Figlarz M (1970) C R Acad Sci Ser C 270:2131

    Google Scholar 

  7. McEwen RS (1971) J Phys Chem 75:1782

    Article  CAS  Google Scholar 

  8. Oliva P, Leonardi J, Laurent JF, Delmas C, Braconnier JJ, Figlarz M, Fiev F, Deguibert A (1982) J Power Sources 8:229

    Article  CAS  Google Scholar 

  9. O’Grady WE, Pandya KI, Swider KE, Corrigan DA (1996) J Electrochem Soc 143:1613

    Article  CAS  Google Scholar 

  10. Ganesh Kumar V, Munichandraiah N, Vishnu Kamath P, Shukla AK (1995) J Power Sources 56:111

    Article  CAS  Google Scholar 

  11. Gonsalves M, Robert Hillman A (1998) J Electroanal Chem 454:183

    Article  CAS  Google Scholar 

  12. French HM, Henderson MJ, Hillman AR, Vieil E (2002) Solid State Ionics 150:27

    Article  CAS  Google Scholar 

  13. French HM, Henderson MJ, Hillman AR, Vieil E (2001) J Electroanal Chem 500:192

    Article  CAS  Google Scholar 

  14. Delahaye-Vidal D, Beaudoin B, Sac-Epee N, Tekaia-Elhsissen K, Audemer A, Figlarz M (1996) Solid State Ionics 84:239

    Article  CAS  Google Scholar 

  15. Tessier C, Guerlou-Demourgues L, Faure C, Basterreix M, Nabias G, Delmas C (2000) Solid State Ionics 133:11

    Article  CAS  Google Scholar 

  16. Bernard MC, Bernard P, Keddam M, Senyarich S, Takenouti H (1996) Electrochim Acta 41:91

    Article  CAS  Google Scholar 

  17. Jayalakshmi M, Venugopal N, Ramachandra Reddy B, Mohan Rao M (2005) J Power Sources 150:272

    Article  CAS  Google Scholar 

  18. Genin P, Delahaye-Vidal A, Portemer F, Tekaia-Elhsissen K, Figlarz M (1991) Eur J Solid State Inorg Chem 28:505

    CAS  Google Scholar 

  19. Scholz F, Meyer B (1998) Voltammetry of solid microparticles immobilized on electrode surfaces. In: Bard AJ, Rubinstein I (eds) Electroanalytical chemistry, a series of advances, vol 20. Dekker, New York, p 1

    Google Scholar 

  20. Bing L, Huatang Y, Yunshi Z, Zuoxiang Z, Deying S (1999) J Power Sources 79:277

    Article  CAS  Google Scholar 

  21. Kostecki R, McLarnon F (1997) J Electrochem Soc 144:485

    Article  CAS  Google Scholar 

  22. Jeong DJ, Kim WS, Choi YK, Sung YE (2001) J Electroanal Chem 511:79

    Article  CAS  Google Scholar 

  23. Kim MS, Hwang KB, Kim J (1997) J Electrochem Soc 144:1537

    Article  CAS  Google Scholar 

  24. Choudary BM, Swarna Jaya V, Ramachandra Reddy B, Lakshmi Kantam M, Mohan Rao M, Sakunthala Madhavendra S (2005) Chem Mater 17:2740

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mohan Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayalakshmi, M., Radhika, P., Raja, K.P. et al. Solvent and thiourea adsorption/intercalation effects on the solid-state electrochemistry of α-phase nickel hydroxide nanoparticles. J Solid State Electrochem 11, 165–172 (2007). https://doi.org/10.1007/s10008-005-0081-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-005-0081-z

Keywords

Navigation