Skip to main content
Log in

Tuning chemical and surface composition of nickel cobaltite-based nanocomposites through solvent and its impact on electrocatalytic activity for oxygen evolution

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Recently, cobaltites derived from the Zeolitic Imidazolate Framework 67 (ZIF-67) have stood out as promising electrocatalysts for the oxygen evolution reaction (OER). However, it is still necessary to understand the experimental parameters in the synthesis of these materials and their impacts on electrocatalysis. Thus, this work reports the influence of the solvent on the impregnation of nickel ions into ZIF-67 for the obtention of nickel cobaltites and its impact on the electrocatalytic behavior. The impregnation process was conducted in methanol or ethanol and investigated via infrared spectroscopy, powder X-ray diffraction (XRD) and thermogravimetry, to understand the different mechanisms of interaction between nickel ions and ZIF- 67. Electrocatalysts were obtained after calcination of the precursors at 350 °C in air. Both solvents lead to the formation of nanocomposites. However, the experiments in methanol resulted in the formation of the nanocomposite NiCo2O4/C, while the use of ethanol led to an additional crystalline phase of nickel oxide (NiCo2O4/NiO/C). Measured overpotentials in the alkaline medium were 333 and 341 mV (in KOH 1 M, at j = 10 mA cm−2), respectively, for NiCo2O4/NiO/C and NiCo2O4/C. The material’s high electrocatalytic performance is related to the high concentration of electroactive sites like Ni3+ and Co3+ ions and the presence of oxygen vacancies. Higher catalytic performance for the NiCo2O4/C nanocomposite was observed at high current densities, related to the low electrode resistance.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Armaroli N, Balzani V (2011) The hydrogen issue. Chemsuschem 4:21–36. https://doi.org/10.1002/cssc.201000182

    Article  CAS  Google Scholar 

  2. El-Emam RS, Özcan H (2019) Comprehensive review on the techno-economics of sustainable large-scale clean hydrogen production. J Clean Prod 220:593–609. https://doi.org/10.1016/j.jclepro.2019.01.309

    Article  CAS  Google Scholar 

  3. Zhao Q, Yan Z, Chen C, Chen J (2017) Spinels: controlled preparation, oxygen reduction/evolution reaction application, and beyond. Chem Rev 117:10121–10211. https://doi.org/10.1021/acs.chemrev.7b00051

    Article  CAS  Google Scholar 

  4. Wang W, Xu M, Xu X et al (2020) Perovskite oxide based electrodes for high-performance photoelectrochemical water splitting. Angew Chemie Int Ed 59:136–152. https://doi.org/10.1002/anie.201900292

    Article  CAS  Google Scholar 

  5. Lv L, Yang Z, Chen K et al (2019) 2D layered double hydroxides for oxygen evolution reaction: from fundamental design to application. Adv Energy Mater 9:1–29. https://doi.org/10.1002/aenm.201803358

    Article  CAS  Google Scholar 

  6. Zhu K, Zhu X, Yang W (2019) Application of In Situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts. Angew Chemie - Int Ed 58:1252–1265. https://doi.org/10.1002/anie.201802923

    Article  CAS  Google Scholar 

  7. Favaro M, Yang J, Nappini S et al (2017) Understanding the oxygen evolution reaction mechanism on CoOx using operando ambient-pressure X-ray photoelectron spectroscopy. J Am Chem Soc 139:8960–8970. https://doi.org/10.1021/jacs.7b03211

    Article  CAS  Google Scholar 

  8. Jiao Y, Zheng Y, Jaroniec M, Qiao SZ (2015) Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev 44:2060–2086. https://doi.org/10.1039/c4cs00470a

    Article  CAS  Google Scholar 

  9. Li YF (2019) First-principles simulations for morphology and structural evolutions of catalysts in oxygen evolution reaction. Chemsuschem 12:1846–1857. https://doi.org/10.1002/cssc.201802525

    Article  CAS  Google Scholar 

  10. Man IC, Su H, Calle-vallejo F et al (2011) Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem. https://doi.org/10.1002/cctc.201000397

    Article  Google Scholar 

  11. Zhang W, Cui L, Liu J (2020) Recent advances in cobalt-based electrocatalysts for hydrogen and oxygen evolution reactions. J Alloys Compd 821:153542. https://doi.org/10.1016/j.jallcom.2019.153542

    Article  CAS  Google Scholar 

  12. Chen Y, Rui K, Zhu J et al (2019) Recent progress on nickel-based oxide/(Oxy)hydroxide electrocatalysts for the oxygen evolution reaction. Chem - A Eur J 25:703–713. https://doi.org/10.1002/chem.201802068

    Article  CAS  Google Scholar 

  13. Bo X, Dastafkan K, Zhao C (2019) Design of multi-metallic-based electrocatalysts for enhanced water oxidation. ChemPhysChem 20:2936–2945. https://doi.org/10.1002/cphc.201900507

    Article  CAS  Google Scholar 

  14. Hua Y, Li X, Chen C, Pang H (2019) Cobalt based metal-organic frameworks and their derivatives for electrochemical energy conversion and storage. Chem Eng J 370:37–59. https://doi.org/10.1016/j.cej.2019.03.163

    Article  CAS  Google Scholar 

  15. Liang Q, Chen J, Wang F, Li Y (2020) Transition metal-based metal-organic frameworks for oxygen evolution reaction. Coord Chem Rev 424:213488. https://doi.org/10.1016/j.ccr.2020.213488

    Article  CAS  Google Scholar 

  16. Wang W, Li Y, Zhang R et al (2011) Metal-organic framework as a host for synthesis of nanoscale Co 3O4 as an active catalyst for CO oxidation. Catal Commun 12:875–879. https://doi.org/10.1016/j.catcom.2011.02.001

    Article  CAS  Google Scholar 

  17. Zhong Y, Xu X, Wang W, Shao Z (2019) Recent advances in metal-organic framework derivatives as oxygen catalysts for zinc-air batteries. Batter Supercaps 2:272–289. https://doi.org/10.1002/batt.201800093

    Article  CAS  Google Scholar 

  18. Lourenço AA, Silva VD, da Silva RB et al (2021) Metal-organic frameworks as template for synthesis of Mn3+/Mn4+ mixed valence manganese cobaltites electrocatalysts for oxygen evolution reaction. J Colloid Interface Sci 582:124–136. https://doi.org/10.1016/j.jcis.2020.08.041

    Article  CAS  Google Scholar 

  19. Yu D, Wu B, Ge L et al (2016) Decorating nanoporous ZIF-67-derived NiCo2O4 shells on a Co3O4 nanowire array core for battery-type electrodes with enhanced energy storage performance. J Mater Chem A 4:10878–10884. https://doi.org/10.1039/c6ta04286d

    Article  CAS  Google Scholar 

  20. Zhou S, Hao C, Wang J et al (2018) Metal-organic framework templated synthesis of porous NiCo2O4/ZnCo2O4/Co3O4 hollow polyhedral nanocages and their enhanced pseudocapacitive properties. Chem Eng J 351:74–84. https://doi.org/10.1016/j.cej.2018.06.070

    Article  CAS  Google Scholar 

  21. Menezes PW, Indra A, Gutkin V, Driess M (2017) Boosting electrochemical water oxidation through replacement of Oh Co sites in cobalt oxide spinel with manganese. Chem Commun 53:8018–8021. https://doi.org/10.1039/c7cc03749j

    Article  CAS  Google Scholar 

  22. Li H, Chen L, Jin P et al (2020) Synthesis of Co2-: XNixO2 (0 < x < 1.0) hexagonal nanostructures as efficient bifunctional electrocatalysts for overall water splitting. Dalt Trans 49:6587–6595. https://doi.org/10.1039/d0dt00925c

    Article  CAS  Google Scholar 

  23. Lai C, Liu X, Wang Y et al (2020) Bimetallic organic framework-derived rich pyridinic N-doped carbon nanotubes as oxygen catalysts for rechargeable Zn-air batteries. J Power Sour. https://doi.org/10.1016/j.jpowsour.2020.228470

    Article  Google Scholar 

  24. Huang C, Su X, Gu X et al (2020) Bimetallic oxide nanoparticles confined in ZIF-67-derived carbon for highly selective oxidation of saturated C–H bond in alkyl arenes. Appl Organomet Chem. https://doi.org/10.1002/aoc.6047

    Article  Google Scholar 

  25. Chen L, Wang H, Shen X et al (2019) A novel route for the generation of Co/CoZn/CoNi layered double hydroxides at ambient temperature. Inorg Chem Front. https://doi.org/10.1039/c9qi00340a

    Article  Google Scholar 

  26. Zhong G, Liu D, Zhang J (2018) The application of ZIF-67 and its derivatives: adsorption, separation, electrochemistry and catalysts. J Mater Chem A 6:1887–1899. https://doi.org/10.1039/c7ta08268a

    Article  CAS  Google Scholar 

  27. Zhao S, Chen J (2019) Metal organic framework-derived Ni/Zn/Co/NC composites as efficient catalyst for oxygen evolution reaction. J Porous Mater 26:381–387. https://doi.org/10.1007/s10934-018-0612-5

    Article  CAS  Google Scholar 

  28. Li L, Yang Q, Zhang C et al (2019) Hollow-structural Ag/Co3O4 nanocatalyst for CO oxidation: interfacial synergistic effect. ACS Appl Nano Mater 2:3480–3489. https://doi.org/10.1021/acsanm.9b00466

    Article  CAS  Google Scholar 

  29. Hu H, Guan B, Xia B, Lou XW (2015) Designed formation of Co3O4/NiCo2O4 double-shelled nanocages with enhanced pseudocapacitive and electrocatalytic properties. J Am Chem Soc 137:5590–5595. https://doi.org/10.1021/jacs.5b02465

    Article  CAS  Google Scholar 

  30. Kwon HT, Jeong HK, Lee AS et al (2015) Heteroepitaxially grown zeolitic imidazolate framework membranes with unprecedented propylene/propane separation performances. J Am Chem Soc 137:12304–12311. https://doi.org/10.1021/jacs.5b06730

    Article  CAS  Google Scholar 

  31. Ferraro JR (1962) Interpretation of the Infrared Spectra of Inorganic Molecules. In: Progress in Infrared Spectroscopy

  32. Faik Demirörs A, Eser BE, Dag Ö (2005) Liquid crystalline mesophases of pluronics (L64, P65, and P123) and transition metal nitrate salts ([M(H2O)6](NO3)2). Langmuir. https://doi.org/10.1021/la047136l

    Article  Google Scholar 

  33. Dag O, Samarskaya O, Tura C et al (2003) Spectroscopic investigation of nitrate-metal and metal-surfactant interactions in the solid AgNO3/C12EO10 and liquid-crystalline [M(H2O)n](NO3)2/C12EO10 systems. Society. 19:3671–3676

    CAS  Google Scholar 

  34. Jiang Z, Li Z, Qin Z et al (2013) LDH nanocages synthesized with MOF templates and their high performance as supercapacitors. Nanoscale 5:11770–11775. https://doi.org/10.1039/c3nr03829g

    Article  CAS  Google Scholar 

  35. Li R, Hu Z, Shao X et al (2016) Large scale synthesis of NiCo layered double hydroxides for superior asymmetric electrochemical capacitor. Sci Rep 6:1–9. https://doi.org/10.1038/srep18737

    Article  CAS  Google Scholar 

  36. Li L, Feng Y, Qiu Y et al (2020) A three-dimensional bimetallic oxide NiCo2O4 derived from ZIF-67 with a cage-like morphology as an electrochemical platform for Hg2+ detection. Microchem J. https://doi.org/10.1016/j.microc.2020.104762

    Article  Google Scholar 

  37. Chen J, Ru Q, Mo Y et al (2016) Design and synthesis of hollow NiCo2O4 nanoboxes as anodes for lithium-ion and sodium-ion batteries. Phys Chem Chem Phys 18:18949–18957. https://doi.org/10.1039/c6cp02871c

    Article  CAS  Google Scholar 

  38. Park SK, Yang SH, Kang YC (2018) Rational design of metal-organic framework-templated hollow NiCo2O4 polyhedrons decorated on macroporous CNT microspheres for improved lithium-ion storage properties. Chem Eng J 349:214–222. https://doi.org/10.1016/j.cej.2018.05.091

    Article  CAS  Google Scholar 

  39. Birks LS, Friedman H (1946) Particle size determination from x-ray line broadening. J Appl Phys doi 10(1063/1):1707771

    Google Scholar 

  40. Zhu Y, Chen J, Zhao N et al (2015) Large-scale synthesis of uniform NiCo2O4 nanoparticles with supercapacitive properties. Mater Lett. https://doi.org/10.1016/j.matlet.2015.07.110

    Article  Google Scholar 

  41. Li Y, Wu X, Wang S et al (2017) Surfactant-assisted solvothermal synthesis of NiCo2O4 as an anode for lithium-ion batteries. RSC Adv. https://doi.org/10.1039/c7ra06172b

    Article  Google Scholar 

  42. da Silva RB, Pinto RA, Soares JM et al (2019) Effect of the synthesis method and calcination temperature on the formation of Ni–NiO nanocomposites. J Sol-Gel Sci Technol. https://doi.org/10.1007/s10971-019-05038-8

    Article  Google Scholar 

  43. Antony RP, Satpati AK, Bhattacharyya K, Jagatap BN (2016) MOF derived nonstoichiometric NixCo3−xO4−ynanocage for superior electrocatalytic oxygen evolution. Adv Mater Interfaces 3:1–12. https://doi.org/10.1002/admi.201600632

    Article  CAS  Google Scholar 

  44. Sun C, Yang J, Rui X et al (2015) MOF-directed templating synthesis of a porous multicomponent dodecahedron with hollow interiors for enhanced lithium-ion battery anodes. J Mater Chem A 3:8483–8488. https://doi.org/10.1039/c5ta00455a

    Article  CAS  Google Scholar 

  45. Hu H, Liu J, Xu Z et al (2019) Hierarchical porous Ni/Co-LDH hollow dodecahedron with excellent adsorption property for Congo red and Cr(VI) ions. Appl Surf Sci 478:981–990. https://doi.org/10.1016/j.apsusc.2019.02.008

    Article  CAS  Google Scholar 

  46. Yang K, Yan Y, Chen W et al (2019) Yolk-shell bimetallic metal-organic frameworks derived multilayer core-shells NiCo2O4/NiO structure spheres for high-performance supercapacitor. J Electroanal Chem 851:113445. https://doi.org/10.1016/j.jelechem.2019.113445

    Article  CAS  Google Scholar 

  47. Wang Y, Wang Y, Lu L et al (2020) Hierarchically hollow and porous NiO/NiCo2O4nanoprisms encapsulated in graphene oxide for lithium storage. Langmuir 36:9668–9674. https://doi.org/10.1021/acs.langmuir.0c00801

    Article  CAS  Google Scholar 

  48. Atchuta SR, Sakthivel S, Barshilia HC (2019) Nickel doped cobaltite spinel as a solar selective absorber coating for efficient photothermal conversion with a low thermal radiative loss at high operating temperatures. Sol Energy Mater Sol Cells. https://doi.org/10.1016/j.solmat.2019.109917

    Article  Google Scholar 

  49. Chen K, Bai S, Li H et al (2020) The Co3O4 catalyst derived from ZIF-67 and their catalytic performance of toluene. Appl Catal A Gen 599:117614. https://doi.org/10.1016/j.apcata.2020.117614

    Article  CAS  Google Scholar 

  50. Lin D, Duan P, Yang W et al (2020) Facile controlled synthesis of core-shell/yolk-shell/hollow ZIF-67@Co-LDH/SiO2: via a self-template method. Inorg Chem Front 7:1643–1650. https://doi.org/10.1039/c9qi01684h

    Article  CAS  Google Scholar 

  51. Verma S, Joshi HM, Jagadale T et al (2008) Nearly monodispersed multifunctional NiCo2O4 spinel nanoparticles: magnetism, infrared transparency, and radiofrequency absorption. J Phys Chem C. https://doi.org/10.1021/jp804923t

    Article  Google Scholar 

  52. Zhu CM, Wang LG, Liu FC, Kong WJ (2019) Exchange bias behaviors up to room temperature in NiCo 2 O 4 /NiO nanoparticle system. Ceram Int 45:9878–9883. https://doi.org/10.1016/j.ceramint.2019.02.028

    Article  CAS  Google Scholar 

  53. Li L, Tian T, Jiang J, Ai L (2015) Hierarchically porous Co3O4 architectures with honeycomb-like structures for efficient oxygen generation from electrochemical water splitting. J Power Sources 294:103–111. https://doi.org/10.1016/j.jpowsour.2015.06.056

    Article  CAS  Google Scholar 

  54. Meena PL, Kumar R, Sreenivas K (2018) Structural, elastic and magnetic properties of spinel Co3O4. Indian J Pure Appl Phys

  55. Windisch CF, Exarhos GJ, Owings RR (2004) Vibrational spectroscopic study of the site occupancy distribution of cations in nickel cobalt oxides. J Appl Phys 95:5435–5442. https://doi.org/10.1063/1.1699505

    Article  CAS  Google Scholar 

  56. McClure DS (1957) The distribution of transition metal cations in spinels. J Phys Chem Solids 3:311–317. https://doi.org/10.1016/0022-3697(57)90034-3

    Article  CAS  Google Scholar 

  57. Nayak S, Dasari K, Joshi DC, et al (2011) Spectroscopic studies of Co 3 O 4 and. 2: 1–12

  58. Sun S, Jin X, Cong B et al (2019) Construction of porous nanoscale NiO/NiCo2O4 heterostructure for highly enhanced electrocatalytic oxygen evolution activity. J Catal 379:1–9. https://doi.org/10.1016/j.jcat.2019.09.010

    Article  CAS  Google Scholar 

  59. Ramos Ramón JA, Ortiz-Quiñonez JL, Ray A et al (2020) Inducing superparamagnetism and high magnetization in nickel cobaltite (NixCo3- xO4) spinel nanoparticles by controlling Ni mole fraction and cation distribution. J Phys Chem C 124:18264–18274. https://doi.org/10.1021/acs.jpcc.0c03075

    Article  CAS  Google Scholar 

  60. Dubey P, Kaurav N, Devan RS et al (2018) The effect of stoichiometry on the structural, thermal and electronic properties of thermally decomposed nickel oxide. RSC Adv 8:5882–5890. https://doi.org/10.1039/C8RA00157J

    Article  CAS  Google Scholar 

  61. Grosvenor AP, Biesinger MC, Smart RSC, McIntyre NS (2006) New interpretations of XPS spectra of nickel metal and oxides. Surf Sci 600:1771–1779. https://doi.org/10.1016/j.susc.2006.01.041

    Article  CAS  Google Scholar 

  62. Cui M, Ding X, Huang X et al (2019) Ni3+-induced hole states enhance the oxygen evolution reaction activity of NixCo3-xO4 electrocatalysts. Chem Mater 31:7618–7625. https://doi.org/10.1021/acs.chemmater.9b02453

    Article  CAS  Google Scholar 

  63. Franco A, Zapf V (2008) Temperature dependence of magnetic anisotropy in nanoparticles of CoxFe(3–x)O4. J Magn Magn Mater. https://doi.org/10.1016/j.jmmm.2007.08.009

    Article  Google Scholar 

  64. Bozorth RM (1993) Ferromagnetism

  65. Kumar BS, Dhanasekhar C, Venimadhav A et al (2018) Pyrolysis-controlled synthesis and magnetic properties of sol–gel electrospun nickel cobaltite nanostructures. J Sol-Gel Sci Technol. https://doi.org/10.1007/s10971-018-4672-4

    Article  Google Scholar 

  66. Silambarasan M, Ramesh PS, Geetha D (2017) Facile one-step synthesis, structural, optical and electrochemical properties of NiCo2O4 nanostructures. J Mater Sci Mater Electron. https://doi.org/10.1007/s10854-016-5527-9

    Article  Google Scholar 

  67. Sattar AA, El-Sayed HM, Alsuqia I (2015) Structural and magnetic properties of CoFe2O4/NiFe2O4 core/shell nanocomposite prepared by the hydrothermal method. J Magn Magn Mater. https://doi.org/10.1016/j.jmmm.2015.07.039

    Article  Google Scholar 

  68. Pottker WE, Ono R, Cobos MA et al (2018) Influence of order-disorder effects on the magnetic and optical properties of NiFe2O4 nanoparticles. Ceram Int. https://doi.org/10.1016/j.ceramint.2018.06.190

    Article  Google Scholar 

  69. Liu ZQ, Xiao K, Xu QZ et al (2013) Fabrication of hierarchical flower-like super-structures consisting of porous NiCo2O4 nanosheets and their electrochemical and magnetic properties. RSC Adv. https://doi.org/10.1039/c3ra23084h

    Article  Google Scholar 

  70. Rodríguez Torres CE, Pasquevich GA, Zélis PM et al (2014) Oxygen-vacancy-induced local ferromagnetism as a driving mechanism in enhancing the magnetic response of ferrites. Phys Rev B - Condens Matter Mater Phys. https://doi.org/10.1103/PhysRevB.89.104411

    Article  Google Scholar 

  71. Choudhury B, Choudhury A, Maidul Islam AKM et al (2011) Effect of oxygen vacancy and dopant concentration on the magnetic properties of high spin Co2 doped TiO2 nanoparticles. J Magn Magn Mater. https://doi.org/10.1016/j.jmmm.2010.09.043

    Article  Google Scholar 

  72. Silva RM, Raimundo RA, Fernandes WV et al (2018) Proteic sol-gel synthesis, structure and magnetic properties of Ni/NiO core-shell powders. Ceram Int. https://doi.org/10.1016/j.ceramint.2017.12.248

    Article  Google Scholar 

  73. Kodama RH, Makhlouf SA, Berkowitz AE (1997) Finite size effects in antiferromagnetic nio nanoparticles. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.79.1393

    Article  Google Scholar 

  74. Kiwi M (2001) Exchange bias theory. J. Magn. Magn. Mater.

  75. Pinheiro AVB, da Silva RB, Morales MA et al (2020) Exchange bias and superspin glass behavior in nanostructured CoFe2O4-Ag composites. J Magn Magn Mater. https://doi.org/10.1016/j.jmmm.2019.165940

    Article  Google Scholar 

  76. Rodrigues APG, Morales MA, Silva RB et al (2020) Positive exchange bias effect in LaCr05Fe05O3 perovskite. J Phys Chem Solids. 141:109334. https://doi.org/10.1016/j.jpcs.2020.109334

    Article  CAS  Google Scholar 

  77. Wang G, Chen Z, He H et al (2018) Room temperature exchange bias in structure-modulated single-phase multiferroic materials. Chem Mater. https://doi.org/10.1021/acs.chemmater.8b02798

    Article  Google Scholar 

  78. Wang HY, Hsu YY, Chen R et al (2015) Ni3+-induced formation of active NiOOH on the spinel Ni-Co oxide surface for efficient oxygen evolution reaction. Adv Energy Mater 5:1–8. https://doi.org/10.1002/aenm.201500091

    Article  CAS  Google Scholar 

  79. Miao X, Wu L, Lin Y et al (2019) The role of oxygen vacancies in water oxidation for perovskite cobalt oxide electrocatalysts: are more better? Chem Commun 55:1442–1445. https://doi.org/10.1039/c8cc08817a

    Article  CAS  Google Scholar 

  80. Shinagawa T, Garcia-Esparza AT, Takanabe K (2015) Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci Rep 5:1–21. https://doi.org/10.1038/srep13801

    Article  Google Scholar 

  81. Li G, Anderson L, Chen Y et al (2018) New insights into evaluating catalyst activity and stability for oxygen evolution reactions in alkaline media. Sustain Energy Fuels. https://doi.org/10.1039/c7se00337d

    Article  Google Scholar 

  82. Zhou J, Zheng H, Luan Q et al (2019) Improving the oxygen evolution activity of Co3O4 by introducing Ce species derived from Ce-substituted ZIF-67. Sustain Energy Fuels 3:3201–3207. https://doi.org/10.1039/c9se00541b

    Article  CAS  Google Scholar 

  83. McCrory CCL, Jung S, Peters JC, Jaramillo TF (2013) Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc 135:16977–16987. https://doi.org/10.1021/ja407115p

    Article  CAS  Google Scholar 

  84. Angulo A, van der Linde P, Gardeniers H et al (2020) Influence of bubbles on the energy conversion efficiency of electrochemical reactors. Joule 4:555–579. https://doi.org/10.1016/j.joule.2020.01.005

    Article  CAS  Google Scholar 

  85. Ahn SH, Choi I, Park HY et al (2013) Effect of morphology of electrodeposited Ni catalysts on the behavior of bubbles generated during the oxygen evolution reaction in alkaline water electrolysis. Chem Commun 49:9323–9325. https://doi.org/10.1039/c3cc44891f

    Article  CAS  Google Scholar 

  86. Harrington DA, Conway BE (1987) ac Impedance of faradaic reactions involving electrosorbed intermediates-I. Kinetic Theor Electrochim Acta 32:1703–1712. https://doi.org/10.1016/0013-4686(87)80005-1

    Article  CAS  Google Scholar 

  87. Doyle RL, Lyons MEG (2013) Kinetics and mechanistic aspects of the oxygen evolution reaction at hydrous iron oxide films in base. J Electrochem Soc 160:H142–H154. https://doi.org/10.1149/2.015303jes

    Article  CAS  Google Scholar 

  88. Swierk JR, Klaus S, Trotochaud L et al (2015) Electrochemical study of the energetics of the oxygen evolution reaction at nickel iron (Oxy)hydroxide catalysts. J Phys Chem C 119:19022–19029. https://doi.org/10.1021/acs.jpcc.5b05861

    Article  CAS  Google Scholar 

  89. Raimundo RA, Silva VD, Medeiros ES et al (2020) Multifunctional solution blow spun NiFe–NiFe2O4 composite nanofibers: structure, magnetic properties and OER activity. J Phys Chem Solids. https://doi.org/10.1016/j.jpcs.2019.109325

    Article  Google Scholar 

  90. Lyons MEG, Brandon MP (2009) The significance of electrochemical impedance spectra recorded during active oxygen evolution for oxide covered Ni, Co and Fe electrodes in alkaline solution. J Electroanal Chem 631:62–70. https://doi.org/10.1016/j.jelechem.2009.03.019

    Article  CAS  Google Scholar 

  91. Wu Y, Gao Y, He H, Zhang P (2019) Electrodeposition of self-supported Ni–Fe–Sn film on Ni foam: an efficient electrocatalyst for oxygen evolution reaction. Electrochim Acta 301:39–46. https://doi.org/10.1016/j.electacta.2019.01.151

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge CAPES for its financial support. Annaíres A. Lourenço and Vinícius D. Silva thanks CAPES for their Master and PhD scholarship, respectively. Daniel A. Macedo acknowledges CNPq (Brazil, 431428/2018-2 and 309430/2019-4). The authors also wish to thank Prof. Dr. Rubens M. Nascimento (UFRN) for support with FESEM. Francisco Loureiro and Duncan Fagg wish to thank the FCT (Fundação para a Ciência e a Tecnologia), grants numbers CEECIND/02797/2020, PTDC/CTM-CTM/2156/2020, PTDC/QUI-ELT/3681/2020, POCI-01-0247-FEDER-039926, POCI-01-0145-FEDER-032241, UIDB/00481/2020 and UIDP/00481/2020; and also, by Centro Portugal Regional Operational Programme (Centro2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF), grant number CEN-TRO-01-0145-FEDER-022083.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniel A. Macedo or Fausthon F. da Silva.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2514 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lourenço, A.A., Silva, V.D., Silva, R.B. et al. Tuning chemical and surface composition of nickel cobaltite-based nanocomposites through solvent and its impact on electrocatalytic activity for oxygen evolution. J Mater Sci 57, 5097–5117 (2022). https://doi.org/10.1007/s10853-022-06941-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-06941-2

Navigation