Skip to main content
Log in

Octacyanomolybdate-doped-poly(4-vinylpyridine) ionomer film electrode for the electrocatalytic oxidation of l-ascorbic acid

  • Short Communication
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Poly(4-vinylpyridine) (PVP)-based anion exchange polymers are not studied as much as cation exchange polymers Nafion and Eastman Kodak AQ for electroanalytical applications. Similarly, octacyanomolybdate [Mo(CN)8 4−] has not been studied much as a redox mediator. This communication presents results from examinations of the behaviour of Mo(CN)8 4−-doped PVP ionomer film electrode to highlight the opportunities for realization of the application of this composite electrode for l-ascorbic acid (AH2) estimation via electrocatalytic mediation in acidic medium. The modified electrodes were characterized by cyclic voltammetry and rotating disc electrode voltammetry. PVP coatings possess strong anion-binding capacity for Mo(CN)8 4− mediator with an extraction coefficient of 990, and electrostatically cross-linked PVP films offer insignificant resistance to permeation of AH2, facilitating a cross-exchange reaction between the substrate and the mediator in the entire film volume. They show effective electrocatalytic oxidation of AH2, with the oxidation potential of AH2 decreased by ∼200 mV in overpotential compared to that at bare electrode. Mo(CN)8 4−/PVP composite electrode does not respond to the more common interferents of l-ascorbic acid estimation even at high positive potentials. These and several other attractive potentialities of the modified electrode are demonstrated by direct determination of AH2 in a commercial vitamin C tablet without any special treatment, with the value closely agreeing (±0.75%) with the reference method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lyons MEG (1996) Electroactive polymers electrochemistry, Part 2. Plenum, New York

    Google Scholar 

  2. Murray RW (1992) Molecular design of electrode surfaces. Techniques of chemistry series, vol XXII. Wiley, New York

    Google Scholar 

  3. Leech D (1996) Analytical applications of polymer-modified electrodes. In: Lyons MEG (ed) Electroactive polymers electrochemistry, Part 2, Chap 10. Plenum, New York

    Google Scholar 

  4. Oyama N, Anson FC (1980) J Electrochem Soc 127:247, 640

    Article  CAS  Google Scholar 

  5. White HS, Leddy J, Bard AJ (1982) J Am Chem Soc 104:4811

    Article  CAS  Google Scholar 

  6. Kuo KN, Murray RW (1982) J Electroanal Chem 13:3798(and references therein)

    Google Scholar 

  7. Krishnan M, Zhang X, Bard AJ (1984) J Am Chem Soc 106:7371

    Article  CAS  Google Scholar 

  8. Harrison DJ, Daube KA, Wrighton MS (1984) J Electroanal Chem 163:93

    Article  CAS  Google Scholar 

  9. Qi Z, Pickup PG (1998) Electrochim Acta 43:1005

    Article  CAS  Google Scholar 

  10. Gehron MJ, Anna Brajter-Toth (1986) Anal Chem 58:1488

    Article  CAS  Google Scholar 

  11. Lorenzo E, Abruna HD (1992) J Electroanal Chem 328:111

    Article  CAS  Google Scholar 

  12. Lyons MEG, Breen W, Cassidy J (1991) J Chem Soc Faraday Trans 87:115

    Article  CAS  Google Scholar 

  13. Connell PJO, Gormally C, Pravda M, Guilbault GG (2001) Anal Chim Acta 431:239

    Article  Google Scholar 

  14. Rajendra Prasad K, Munichandraiah N (2002) Anal Chem 74:5531

    Article  PubMed  CAS  Google Scholar 

  15. Doherty AP, Stanley MA, Vos JG (1995) Analyst 120:2371

    Article  CAS  Google Scholar 

  16. Bae Z, Park J-H, Lee S-H, Chang H-Y (1999) J Electroanal Chem 468:85

    Article  CAS  Google Scholar 

  17. Pournaghi-Azhar MH, Rajmi-Nerbin H (2000) J Electroanal Chem 488:17

    Article  Google Scholar 

  18. Florou AB, Prodromidis MI, Tzouwara-Karayanni SM, Karayannis MI (2000) Anal Chim Acta 423:107

    Article  CAS  Google Scholar 

  19. Raoof J, Ojani R, Kiani A (2001) J Electroanal Chem 515:45

    Article  CAS  Google Scholar 

  20. Iwuoha EI, Smyth MR (1996) Polymer-based amperometric biosensors. In: Lyons MEG (ed), Electroactive polymers electrochemistry, Part 2, Chap 11. Plenum, New York

    Google Scholar 

  21. Oyama N, Sato K, Matsuda H (1983) J Electroanal Chem 115:149

    Article  Google Scholar 

  22. Lindholm B (1988) J Electroanal Chem 250:341

    Article  CAS  Google Scholar 

  23. Fritsch-Faules I, Faulkner LR (1992) Anal Chem 64:1118, 1127 (and references therein)

    Article  CAS  Google Scholar 

  24. Tjarnhage T, Skarman B, Lindholm B, Sharp M (1996) Electrochim Acta 41:367 (and references therein)

    Article  Google Scholar 

  25. Van Koppenhagen JE, Majda M (1987) J Electroanal Chem 236:113 (and references therein)

    Article  Google Scholar 

  26. Sharp M, Montgomery DD, Anson FC (1985) J Electroanal Chem 194:247 (and references therein)

    Article  CAS  Google Scholar 

  27. Anson FC, Ohsaka T, Saveant JM (1983) J Am Chem Soc 105:4883 (and references therein)

    Article  CAS  Google Scholar 

  28. Andrieux CP, Dumas-Bouchiat JM, Saveant J-M (1982) J Electroanal Chem 131:1

    Article  CAS  Google Scholar 

  29. Andrieux CP, Saveant J-M (1982) J Electroanal Chem 142:1

    Article  CAS  Google Scholar 

  30. Andrieux CP, Saveant J-M (1992) Catalysis at redox polymer coated electrodes. In: Murray RW (ed) Molecular design of electrode surfaces. Techniques of chemistry, vol XXII, Chap V. Wiley, New York

    Google Scholar 

  31. Schroder U, Scholz F (1997) J Solid State Electrochem 1:62

    Article  CAS  Google Scholar 

  32. Taniguchi I, Miyamoto S, Tomimura S, Hawkridge FM (1988) J Electroanal Chem 240:333

    Article  CAS  Google Scholar 

  33. Pelizzetti E, Mentasti E, Pramauro E (1978) Inorg Chem 17:1181

    Article  CAS  Google Scholar 

  34. Cunniff P (1999) Official methods of analysis of the AOAC, 16th edn, Chap 45. AOAC International, Maryland, MA, p 16

    Google Scholar 

  35. Cai C-X, Xue K-H, Xu S-M (2000) J Electroanal Chem 486:111

    Article  CAS  Google Scholar 

  36. Ren J, Zhang H, Ren Q, Xia C, Wan J, Qiu Z (2001) J Electroanal Chem 504:59

    Article  CAS  Google Scholar 

  37. Furman NH, Miller CO (1950) Inorg Synth 3:160

    Article  Google Scholar 

  38. Thangamuthu R (2001) Ph.D. dissertation, Department of Physical Chemistry, University of Madras, India

    Google Scholar 

  39. Brown AP, Anson FC (1977) Anal Chem 49:1589

    Article  CAS  Google Scholar 

  40. Lenhard JR, Murray RW (1978) J Am Chem Soc 100:7870

    Article  CAS  Google Scholar 

  41. Facci J, Murray RW (1982) Anal Chem 54:772

    CAS  Google Scholar 

  42. Ilangovan G, Chandrasekara Pillai K (1997) Langmuir 13:566

    Article  CAS  Google Scholar 

  43. Senthil Kumar A, Chandrasekara Pillai K (2000) J Solid State Electrochem 4:408

    Article  Google Scholar 

  44. Ohasaka T, Okajima T, Oyama N (1986) J Electroanal Chem 215:191

    Article  Google Scholar 

  45. Jiang R, Anson FC (1991) J Electroanal Chem 305:171

    Article  CAS  Google Scholar 

  46. Yan SG, Hupp JT (1995) J Electroanal Chem 397:119

    Article  Google Scholar 

  47. Bonfranceschi A, Cordoba AP, Keunchkarian S, Zapata S, Tucceri R (1999) J Electroanal Chem 477:1 (and references therein)

    Article  CAS  Google Scholar 

  48. Karabinas P, Jannakoudakis D (1984) J Electroanal Chem 160:159

    Article  CAS  Google Scholar 

  49. Doherty AP, Foster RJ, Smyth MR, Vos JG (1991) Anal Chim Acta 255:45

    Article  CAS  Google Scholar 

  50. Kutnik MA, Hawkes WC, Schaus EE, Omage ST (1982) Anal Biochem 66:424

    Google Scholar 

  51. Pachla LA, Reynolds DL, Kissinger PT (1985) J Assoc Off Anal Chem 68:1

    PubMed  CAS  Google Scholar 

  52. Zen J-M, Tsai D-M, Senthilkumar A, Dharuman V (2000) Electrochem Commun 2:782

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are gratefully indebted to the Council of Scientific and Industrial Research and the University Grants Commission, India, for financial support and to Prof. Isao Taniguchi of Kumamoto University, Japan, for providing facilities during the preparation of this manuscript and for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Chandrasekara Pillai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thangamuthu, R., Senthilkumar, S.M. & Chandrasekara Pillai, K. Octacyanomolybdate-doped-poly(4-vinylpyridine) ionomer film electrode for the electrocatalytic oxidation of l-ascorbic acid. J Solid State Electrochem 11, 126–133 (2007). https://doi.org/10.1007/s10008-005-0074-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-005-0074-y

Keywords

Navigation