Skip to main content

Advertisement

Log in

Adsorption of CO on Ru and Pt blacks and catalysts and the possibility of its utilization for the determination of the ruthenium-free surface

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Electrochemical voltammetric curves on Ru and Pt blacks of a different surface area were measured in potential intervals 0.05–1.05 V in pure 0.5 M H2SO4 and after CO adsorption. It was proved that after the CO adsorption, the outset of ruthenium oxidation is shifted by about 150 mV towards the positive potentials, e.g. to the region of oxidation of adsorbed CO. This fact made possible the determination of a double-layer charging current of Ru electrodes and, subsequently, also the determination of the amount of adsorbed hydrogen on the Ru surface. An evaluation of the amount of CO and hydrogen adsorption showed that the ratio of adsorbed CO:H on the Pt surface was about 1:1, while on Ru electrodes this ratio was around twice as large. The amount of hydrogen adsorbed on Ru blacks depends on the preliminary preparation of the electrodes. The CO adsorption could also be employed in the determination of a charging current of electrode double-layers during voltammetric oxidation of adsorbed hydrogen on ruthenium supported on Al2O3, SiO2, or TiO2 carriers. However, a similar determination of hydrogen adsorbed on the tin-modified Ru catalysts is not very reliable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bett J, Kinoshita K, Routsis K, Stonehart P (1973) J Catal 29:160

    Article  CAS  Google Scholar 

  2. Ménézo LC, Hoang LC, Montassier C, Barbier J (1991) Appl Catal 74:15

    Article  Google Scholar 

  3. Kubicka H (1968) React Kinet Catal Lett 5:223

    Article  Google Scholar 

  4. Blanchard H, Charosset H (1980) React Kinet Catal Lett 15:209

    Article  CAS  Google Scholar 

  5. Tailor KC (1975) J Catal 38:299

    Article  Google Scholar 

  6. Kubicka H (1968) J Catal 12:223

    Article  CAS  Google Scholar 

  7. Corro G, Gomez R (1979) React Kinet Catal Lett 12:145

    Article  CAS  Google Scholar 

  8. Goodwin JG (1981) J Catal 68:227

    Article  CAS  Google Scholar 

  9. Hadzi-Jordanov S, Angerstein-Kozlowska H, Conway BE (1975) J Electroanal Chem 60:359

    Article  CAS  Google Scholar 

  10. Hadzi-Jordanov S, Angerstein-Kozlowska H, Vukovic M, Coway BE (1978) J Electrochem Soc 125:1471

    Article  CAS  Google Scholar 

  11. Hu C-C, Chiang H-R, Wang C-C (2003) J Solid State Electrochem 7:477

    Article  CAS  Google Scholar 

  12. Burke LD, Murphy OJ (1979) J Electroanal Chem 96:19

    Article  CAS  Google Scholar 

  13. Fernández JL, Marozzi CA, Gennero de Chialvo MR, Chialvo AC (1998) J Electroanal Chem 457:109

    Article  Google Scholar 

  14. Paseka I (2001) Appl Catal A Gen 207:257

    Article  CAS  Google Scholar 

  15. Trasatti S, Petrii OA (1992) J Electroanal Chem 327:335

    Article  Google Scholar 

  16. Takasu Y, Fujiwara T, Murakami Y, Sasaki K, Oguri M, Asaki T, Sugimoto W (2000) J Electrochem Soc 147:4421

    Article  CAS  Google Scholar 

  17. Green CL, Kucernak A (2002) J Phys Chem B 106:1036

    Article  CAS  Google Scholar 

  18. Green CL, Kucernak A (2002) J Phys Chem B 106:11446

    Article  CAS  Google Scholar 

  19. Newkirk AE, McKee DW (1968) J Catal 11:370

    Article  CAS  Google Scholar 

  20. Kluson P, Cerveny L, Had J, Laurentova S (1993) React Kinet Catal Lett 51:203

    Article  CAS  Google Scholar 

  21. Blurton KF, Greenberg P, Oswin HG, Rutt DR (1972) J Electrochem Soc 119:559

    Article  CAS  Google Scholar 

  22. Orts JM, Fernandez-Vega A, Feliu JM, Aldaz A, Clavilier J (1992) J Electroanal Chem 327:261

    Article  CAS  Google Scholar 

  23. Weaver MJ (1998) Langmuir 14:3932

    Article  CAS  Google Scholar 

  24. Lin WF, Jin JM, Christensen PA, Scott K (2003) Electrochim Acta 48:3815

    Article  CAS  Google Scholar 

  25. Paulus UA, Wang Y, Jacobi K, Ertl G (2003) Surf Sci 547:349

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant Agency of the Czech Republic, project No. 104/03/0409.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo Paseka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paseka, I. Adsorption of CO on Ru and Pt blacks and catalysts and the possibility of its utilization for the determination of the ruthenium-free surface. J Solid State Electrochem 11, 52–58 (2007). https://doi.org/10.1007/s10008-005-0065-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-005-0065-z

Keywords

Navigation