Skip to main content
Log in

Electrochemically induced transformations of ruthenium(III) trichloride microcrystals in salt solutions

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Ruthenium (III) trichlorid solid crystals have been mechanically attached to gold surfaces and studied by cyclic electrochemical quartz crystal microbalance measurements in the presence of aqueous solutions of different concentrations containing M+Cl, where M+=H+, Li+, Na+, K+, Rb+, Cs+. The RuCl3 and the complexes formed during the electrochemical transformations show two or more reduction and reoxidation pairs of waves, depending on the experimental conditions (concentration, scan rate, and potential range). The voltammetric peaks are shifted into the direction of higher potentials with increasing electrolyte concentrations except at very high concentrations when the peaks belong to the first reduction/reoxidation processes move oppositely. The mass change was reversible, during reduction mass increase, while during oxidation mass decrease occurred at medium electrolyte concentrations in two, more or less distinct steps. At high or low concentrations the mass excursions are more complex involving different mass increase/decrease regions as a function of potential which vary with the potential range of the measurements. The peak potentials and the electrochemical activity strongly depend on the nature of the cations and pH. It is related to the formation of complexes in different compositions. The mass change decreases with increasing electrolyte concentrations attesting the important role of the water activity and the transport of solvent molecules. It was concluded that in dilute solutions during the first reduction step M+ ions enter the surface layer. The strongly hydrated Li+ ions transfer water molecules into the microcrystals, while simultaneously with the incorporation of K+, Rb+, and Cs+ ions H2O molecules leave the surface layer. The opposite transport of ions and solvent molecules occur during oxidation. In the course of further reduction the incorporation of all ions studied except that of Cs+ ions is accompanied with water sorption. The number of sorbed water molecules is proportional to the hydration number of these ions. A reaction scheme is proposed in which M+ m-3[RuIIICl m (H2O) n ]3-m · xH2O (m≥3) and [RuIIICl m (H2O) n ]3-m (Cl)3-m · xH2O (m≤3) type complexes are reduced to the respective – or depending on the electrolyte concentration higher or lower – Ru(II)chloro complexes resulting in mixed valence compounds (phases). Taking into account the layered structure of RuCl3 the electrochemical reduction can be explained as an intercalation reaction in that mixed valence intercalation phases with a general formula M x +(H2O) y [RuCl3]x are formed from RuCl3·x H2O. The reduction/reoxidation waves are related to the redox transformations of Ru(III) to Ru(II) sites, while the composition of the polynuclear complexes and the structure of microcrystals change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Cotton FA, Wilkinson G, Murillo CA, Bochman M (1999) Advanced inorganic chemistry. Wiley, New York, pp 1010–1039

    Google Scholar 

  2. Livingstone SE (1973) In: Bailar JC, Emeléus MJ, Nyholm R, Trotman-Dickenson AF (eds) Comprehensive Inorganic Chemistry, vol 3. Pergamon Press, Oxford, pp 1163–1370

  3. Chandret B, Sabo-Etienne S (1994) In: King RB (ed) Encyclopedia of inorganic chemistry, vol 7. Wiley, Chichester

  4. Appelbaum L, Heinrichs C, Demtschuk J, Michman M, Oron M, Schäfer HJ, Schumann H, Organomet J (1999) Chem 592:240

    Article  CAS  Google Scholar 

  5. Trasatti S (2000) Electrochim Acta 45:2377

    Article  CAS  Google Scholar 

  6. Latimer WM (1952) The oxidation states of the elements and their potentials in aqueous solutions. Prentice-Hall, Englewood Cliffs, p 228

    Google Scholar 

  7. Llopis JF, Tordesillas IM (1976) In: Bard AJ (ed) Encyclopedia of electrochemistry, vol 6. Marcel Dekker, New York, p 277

  8. Colom F (1985) In: Bard AJ, Parsons R, Jordan J (eds) Standard potentials in aqueous solution. Marcel Dekker, New York, p 413

  9. De Benedetto GE, Guascito MR, Ciriello R, Cataldi TRI (2000) Anal Chim Acta 410:143

    Article  Google Scholar 

  10. Kasem K, Steldt FR, Miller TJ, Zimmerman AN (2003) Microporous Mesoporous Mat 66:133

    Article  CAS  Google Scholar 

  11. Chen SM, Hsueh SH (2004) J Electroanal Chem 566:291

    Article  CAS  Google Scholar 

  12. Kulesza PJ (1987) J Electroanal Chem 220:295

    Article  CAS  Google Scholar 

  13. Scholz F, Meyer B (1998) In: Bard AJ, Rubinstein I (eds) Electroanalytical Chemistry, vol 20. Marcel Dekker, New York, p 1

  14. Grygar T, Marken F, Schröder U, Scholz F (2002) Coll Czech Chem Commun 67:163

    Article  CAS  Google Scholar 

  15. Fiedler DA, Scholz F (2002) In: Scholz F (ed) Electroanalytical Methods Ch II 8. Springer, Berlin Heidelberg New York, pp 201–222

  16. Bond AM, Marken F, Williams CT, Beattie DA, Keyes TE, Forster RJ, Vos JG (2000) J Phys Chem 104:1977

    CAS  Google Scholar 

  17. Ramaray R, Kabbe C, Scholz F (2000) Electrochem Commun 2:190

    Article  Google Scholar 

  18. Inzelt G, Puskás Z (2004) Electrochem Commun 6:805

    Article  CAS  Google Scholar 

  19. Pollini I (1994) Phys Rev B 50:4

    Article  Google Scholar 

  20. Pollini I (1996) Phys Rev B 53:19

    Article  Google Scholar 

  21. Mott NF (1961) Philos Mag 6:287

    Article  CAS  Google Scholar 

  22. Wilson JA (1985) In: Edwards PP, Rao CN (eds) The Metallic and Nonmetallic States of Matter. Taylor and Francis, London, pp 215–260

  23. Fehér K, Inzelt G (2002) Electrochim Acta 47:3551

    Article  Google Scholar 

  24. Inzelt G (2003) J Solid State Electrochem 7:503

    Article  CAS  Google Scholar 

  25. Inzelt G, Puskás Z (2004) Electrochim Acta 49:1969

    Article  CAS  Google Scholar 

  26. Varga I, Bohlen A, von Klockenkämper R, Záray G (2000) Microchem J 67:265

    Article  CAS  Google Scholar 

  27. Varga I, Rierpl E, Tusai A (1999) J Anal At Spectrom 14:881

    Article  CAS  Google Scholar 

  28. Vittal L, Jayalakshim M, Gomathi H, Prahakara Rao G (1999) J Electrochem Soc 146:786

    Article  CAS  Google Scholar 

  29. Schneemeyer LF, Spengler SE, Murphy DW (1985) Inorg Chem 24:3044

    Article  CAS  Google Scholar 

  30. Bácskai J, Martinusz K, Czirók E, Inzelt G, Kulesza PJ, Malik MA (1995) 385:241

  31. Retter U, Widmann A, Siegler K, Kahlert H (2003) J Electroanal Chem 546:87

    Article  CAS  Google Scholar 

  32. Chen SM (2002) J Electroanal Chem 521:29

    Article  CAS  Google Scholar 

  33. Pournaghi-Azar MH, Dastangoo H (2002) J Electroanal Chem 523:26

    Article  CAS  Google Scholar 

  34. Engel D, Grabner EW (1985) Ber Bunsenges Phys Chem 89:982

    CAS  Google Scholar 

  35. Chen SM, Chan CM (2003) J Electroanal Chem 543:161

    Article  CAS  Google Scholar 

  36. Cui X, Hong L, Lin X (2002) J Electroanal Chem 526:115

    Article  CAS  Google Scholar 

  37. Malik MA, Horányi G, Kulesza PJ, Inzelt G, Kertész V, Schmidt R, Czirók E (1998) J Electroanal Chem 452:57

    Article  CAS  Google Scholar 

  38. Schöllhorn R, Steffen R, Wagner K (1983) Angew Chem 95:559

    Article  Google Scholar 

  39. Steffen R, Schöllhorn R (1986) Solid State Ionics 22:31

    Article  CAS  Google Scholar 

  40. Evans CD, Chambers JQ (1994) Chem Mater 6:454

    Article  CAS  Google Scholar 

  41. Hepel M, Janusz W (2000) Electrochim Acta 45:3785

    Article  CAS  Google Scholar 

  42. Scholz F, Lovric M, Stojek Z (1997) J Solid State Electrochem 1:134

    Article  CAS  Google Scholar 

  43. Suárez MF, Bond AM, Compton RG (1999) J Solid State Electrochem 4:24

    Article  Google Scholar 

  44. Puskás Z, Inzelt G (2004) J Solid State Electrochem 8:828

    Article  CAS  Google Scholar 

  45. Robinson RA, Stokes RH (1959) Electrolyte solutions. Butterworths, London, pp 491–504

    Google Scholar 

  46. Handbook of Chemistry and Physics (1977) Weast RC (ed) CRC Press, Cleveland, Ohio, p D-234

  47. Taqui Khan MM, Ramachandraiah G, Prakash Rao A (1986) Inorg Chem 25:665

    Article  CAS  Google Scholar 

  48. Trasatti S, Kurzweil P (1994) Platinum Met Rev 38:46

    CAS  Google Scholar 

  49. Wang JX, Marinkovic NS, Zajonz H, Ocko BM, Adzic RR (2001) J Phys Chem B 105:2809

    Article  CAS  Google Scholar 

  50. Vericat C, Wakisaka M, Haasch R, Bagus PS, Wieckowski A (2004) J Solid State Electrochem 8:794

    Article  CAS  Google Scholar 

  51. Wang L, Brazis P, Rocci M, Kannewurf CR, Kanatzidis MG (1998) Chem Mater 10:3298

    Article  CAS  Google Scholar 

  52. Wang L, Rocci-Lane M, Brazis P, Kannewurf CR, Kim YI, Lee W, Choy JH, Kanatzidis MG (2000) J Am Chem Soc 122:6629

    Article  CAS  Google Scholar 

  53. Levi MD, Aurbach D (1997) J Electroanal Chem 421:79

    Article  CAS  Google Scholar 

  54. Levi MD, Levi EA, Aurbach D (1997) J Electroanal Chem 421:89

    Article  CAS  Google Scholar 

  55. Levi MD, Aurbach D (1997) Electrochim Acta 45:167

    Article  Google Scholar 

  56. Ohmori T, El-Deab MS, Osawa M (1999) J Electroanal Chem 470:46

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support by the National Scientific Research Fund (OTKA T046987) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Inzelt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inzelt, G., Puskás, Z., Németh, K. et al. Electrochemically induced transformations of ruthenium(III) trichloride microcrystals in salt solutions. J Solid State Electrochem 9, 823–835 (2005). https://doi.org/10.1007/s10008-005-0019-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-005-0019-5

Keywords

Navigation